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ABSTRACT

Recording of maternal uterine pressure (UP) and fetal heart rate (FHR) during labour

and delivery is a procedure referred to as cardiotocography. Delay or failure to recognize

abnormal patterns in these recordings can result in a failure to prevent fetal injury. Clin-

ical interpretation has been predominantly visual, creating significant problems of intra-

and inter-subject variability, as well as significant debate about its utility due to the low

specificity of visual interpretation that contributes to unnecessary interventions (Cesarian

sections). Taking a more automated and objective approach, we modelled the UP-FHR

signal pair, for the first time, as an input-output system using a system identification ap-

proach to estimate their dynamic relation in terms of an impulse response function. We

also modelled FHR baseline with a linear fit and FHR variability unrelated to UP using

the power spectral density computed from an auto-regressive model. Using a perinatal

database of normal and pathological cases, we trained support-vector-machine classifiers

with feature sets from these models. We used the classification in a detection process. We

obtained the best results with a detector that combined the decisions of classifiers using

both feature sets. It detected half of the pathological cases, with very few false positives

(7.5%), one hour and forty minutes before delivery. This would leave sufficient time for an

appropriate clinical response. These results clearly demonstrate the utility of our method

for the early detection of cases needing clinical intervention.
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ABRÉGÉ

L’enregistrement de la pression utérine (PU) et de la fréquence cardiaque fœtale (FCF)

pendant le travail et l’accouchement est une procédure appelée cardiotocographie (CTG).

Une reconnaissance tardive ou erronée des anomalies dans ces données peut augmenter

les risques de lésions au fœtus. L’analyse de ces données est principalement pratiquée

visuellement; la difficulté de cette méthode, les problèmes liés aux importantes varia-

tions intra- et inter-sujets et le risque de faux positifs entrainant des interventions inutiles

(césariennes) entretiennent un important débat sur l’utilité de cette technique. Par une

approche plus objective et automatique, nous avons pour la première fois modélisée la

pression utérine et la fréquence cardiaque en tant que système entrée-sortie utilisant une

approche d’identification de système pour estimer leur relation dynamique en termes d’une

fonction de réponse impulsionnelle. Nous avons également modélisé le rythme de base de la

FCF à l’aide d’une régression linéaire, ainsi que la variabilité de la FCF sans lien avec la PU

à l’aide de densités spectrales de puissance issues d’un modèle autorégressif. Ces modèles,

appliqués à une base de données périnatale de cas normaux et pathologiques ont servi à

l’apprentissage de machines à vecteurs de support (séparateurs à vaste marge) utilisées

dans un processus de détection pour la classification du FCF. Les meilleurs résultats sont

obtenus avec un détecteur combinant les décisions de classificateurs utilisant les deux en-

sembles de caractéristiques. Ils ont détectés la moitié des cas pathologiques, avec très peu

de faux positifs (7.5%), une heure et quarante minutes avant l’accouchement. Cela laisserait

suffisamment de temps pour une réponse médicale appropriée. Ces résultats démontrent

clairement l’utilité de notre méthode pour la détection prématurée des cas nécessitant une

intervention clinique.
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CHAPTER 1
Introduction

1.1 Motivation

Although childbirth is a natural process and outcomes are generally good, approxi-

mately 1-7 in 1000 babies experience sufficient oxygen deprivation during labor to cause

death or brain injury [2,3,15]. During labor the fetus is relatively inaccessible and the clin-

ician must rely upon indirect measures of fetal condition to assess its tolerance to labor.

The objective of this monitoring is to detect the fetus at substantial risk of hypoxic injury

so that intervention can prevent its occurrence. Today over 90% of labors are monitored

electronically with sensors that measure and record fetal heart rate (FHR) and maternal

uterine pressure (UP). Delay or failure to recognize abnormal patterns in these recordings

can lead to fetal injury.

In fact, multiple reviews of cases with birth-related brain injury suggest that around

50% of such injuries are related to preventable medical errors, most often centering on

incorrect analysis of the FHR recording [15,59,67,75]. The financial burden is massive and

rising, reflecting the 4.5 million annual births in North America, the frequency of errors

and the cost of an individual settlement for a baby with permanent birth related brain

injury. The median jury award in single cases involving childbirth reached US$1,000,000

in 2000, and continues to climb [1]. Thus it is not surprising that childbirth healthcare

services continue to generate the most frequent malpractice claims and lawsuits as well as

the greatest liability exposure and cost of all medical specialties [5]. Furthermore, the

debate over obstetrical litigation costs is not merely an American one; even in Canada the

1
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fact that malpractice insurance fees for obstetricians in some provinces are ten-times the

average of all health-care disciplines has been called the ‘current crisis in obstetrics’ [36].

Assessing fetal condition from cardiotocography (CTG), also known as electronic fetal

monitoring (EFM), poses many challenges to obstetrical care. Visual interpretation of UP

and FHR data has been common since the 1960’s when Hon and Lee first demonstrated

clinically that heart-rate variability correlated to fetal morbidity [28], but there is much

debate surrounding its use due to significant inter- and intra-subject variability in the inter-

pretations. Visual assessment by obstetrical staff has not lived up to expectations: while

it has provided benefits to monitoring of labour, especially in reducing fetal mortality,

studies show that its use has been associated with unnecessary intervention and increased

Cesarean-section rates [37]. Fundamentally, the FHR captures only a portion of the rel-

evant fetal-health information, so incorporating it into decision-making is an inherently

probabilistic endeavour.

Given the paucity of data regarding the precise correlation between the degree and

duration of abnormal FHR patterns and hypoxic injury, it is not surprising that clinicians

are uncertain about when to intervene. Faced with the extremely debilitating effects of

delayed intervention and against the backdrop of potential litigation, there is a tendency

towards early intervention, and consequently, a corresponding escalation of the Cesarean

section rate.

1.2 Problem Areas

The application of modern computational techniques and hardware to this problem

opens the possibility of automatic and therefore consistent real-time assessment of the fetal

state. This assessment could be used as an adjunct to the information already available to

care-givers. This is an inherently multi-disciplinary problem which draws from, in addition

2
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to obstetrics, the combined technical expertise of signal estimation, system identification,

machine learning and statistics.

Signal estimation addresses the problem of describing signals that exhibit some degree

of random behaviour. It can also be posed as forming an opinion about the numerical value

of a quantity that cannot be observed directly. Both aspects are relevant to our problem

in that compact mathematical representations (models) of the measureable signals are

required to capture succinctly their information content and interactions while suppressing

noise and other disturbances. On the other hand, the fetal state during labour can be

considered a quantity that is not directly observable but must be inferred from available

measurements. Given the range of possible fetal conditions during labour and delivery and

the indirect nature of CTG as a measure of fetal state, it is reasonable to pose fetal-state

assessment as an estimation problem. With these estimates, one can hope to form a system

model that approximates the behaviour of the underlying system. If this modelling phase

is successful, it is reasonable to expect that inferences about the unobserved (or ‘hidden’)

fetal state may be made by tracking how the system model changes with time.

If the signal interactions mentioned above can be interpreted as stimulus-response

phenomena, it is possible to model them as an input-output system. The input and output

in the context of fetal monitoring is UP and FHR, respectively. Such input-output modeling

is referred to as ‘system identification’ and there are a number of approaches that aim to

construct both linear and non-linear models. Most real-world problems are non-linear in

nature although linear models can be adequately descriptive for certain phenomena.

In fact, this thesis focuses on linear system models, since they are able to represent

the signals of interest with sufficient fidelity. To our knowledge, the system-identification

approach applied to modelling this UP-FHR interaction has not been described in the

literature. When we complement the system identification model with model parameters

3
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of the FHR baseline and variability, we obtain a novel overall FHR model that is a good

representation of the measured FHR.

This modelling approach is to be distinguished from hypothesis-driven (or ‘deductive’)

modeling where accepted physiological models drive the search for features correlating to

those models. Many previous works aiming to describe UP and FHR have adopted such

a feature-detection-based paradigm. On the other hand, the ‘data-driven’ (or ‘inductive’)

approach of this thesis directly models the signals and their coupling and in so doing

introduces fewer a priori assumptions on the information content of the data. The two

approaches should be considered as two poles of a continuous spectrum since hypotheses can

provide reasonable starting points for the inductive analysis (e.g. an appropriate timescale

for local analysis in a non-stationary environment). In turn, the data-driven and relatively

unbiased knowledge can be used to inform hypothesis-driven research [49].

The research area of machine learning concerns itself with the construction of computer

programs that automatically improve with experience. This field is currently undergoing a

significant surge in multi-disciplinary research and industrial interest due to the advance-

ment of powerful algorithms and hardware in recent years. Many open research avenues

remain that build on the foundation now in place. For our problem, drawing from a pop-

ulation of healthy and pathological fetuses, the concise models of CTG described above

provide the ‘experience’ while machine learning provides the statistical and probabilistic

tools to assess their discriminating power. The main machine learning tool used in this

thesis is a support-vector machine classifier.

1.3 Thesis Objectives

CTG interpretation is a problem where consistently applied policies that lead to im-

provements of a single percentage point in sensitivity and specificity can have significant

impact on the quality of obstetrical care. With this in mind, the goals of this thesis are:

4
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1. to produce models of UP and FHR, accounting for their interactions as much as

possible with system-identification techniques. This is analysis that is informed by

physiology but primarily driven by data, exploiting the database of the industrial

partner of the research, LMS Medical Systems, Ltd.

2. to produce automated, intelligent and timely assessments of the risk of fetal oxygen

deprivation from these models that have accuracy and confidence levels as high as

the data permits and that compare favourably to and integrate with current clinical

assessment policies.

1.4 Statement of originality for co-authored works

This thesis follows the manuscript model and therefore is structured around three

journal articles:

• Journal Article I: Feature Extraction

– Philip A. Warrick, Doina Precup, Emily F. Hamilton, and Robert E. Kearney.

Fetal heart rate deceleration detection using a discrete cosine transform imple-

mentation of singular spectrum analysis. Methods of Information in Medicine,

46(2):196–201, 2007

• Journal Article II: System Identification

– Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kearney.

Identification of the dynamic relationship between intra-partum uterine pressure

and fetal heart rate for normal and hypoxic fetuses. IEEE Transactions on

Biomedical Engineering, 56(6):1587–1597, June 2009

• Journal Article III: Fetal-State Classification

– Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kear-

ney. Classification of normal and hypoxic fetuses from systems modelling of

5
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intra-partum cardiotocography. IEEE Transactions on Biomedical Engineering,

October 2009. accepted

As first author of these papers, I did all the data analysis and the writing of the

manuscripts. These works were multidisciplinary, however, with thesis co-supervisors

Robert Kearney and Doina Precup providing guidance and direction on the data analysis

(especially signal processing, modelling and machine learning) and editing contributions.

Guidance for the clinical obstetrics sections was provided by Emily Hamilton.

1.5 Overview

This thesis is structured as follows. Chapter 2 contains a literature review of the

most relevant physiological and clinical information related to fetal surveillance, followed

by a selected review of automated fetal-state assessment techniques. A description of the

background methodology to the journal papers is given in chapter 3. The journal papers

are given in chapters 4, 5 and 6. The conclusions drawn from the work appear in chapter 8.

6
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CHAPTER 2
Literature review

2.1 Physiological-clinical literature

2.1.1 Neonatal neuropathology

The two main adverse outcomes attributable to oxygen deprivation (‘asphyxia’) during

labour are hypoxic ischemic encephalopathy (HIE) and cerebral palsy (CP). The medical

literature includes several similar and interrelated conditions which are described below.

Pediatric neurological mortality/morbidity refers to any childhood neurological condi-

tion and is relatively common with an incidence of 50-70 per 1000 live births (see Table 2–1

for a summary of all incidences in this section). Encephalopathy is a collection of signs

indicating cerebral injury. A clinical diagnosis requires the presence of at least two of the

following 1) abnormal conscious state; 2) feeding or respiratory difficulty of central origin;

or 3) abnormal tone often accompanied by seizures. Neonatal encephalopathy (NE) refers

to any encephalopathy from any cause occurring in the first 7 days of life, and has an

incidence of 1.8-7.7 per 1000 births. Reports attribute about 10 to 30% of NE to birth

asphyxia involving hypoxic ischemic encephalopathy [13, 25, 53]. HIE refers to a subset of

NE where there is also evidence of birth asphyxia (most reliably defined as the presence of

an elevated base deficit in an umbilical artery blood sample) and no other obvious cause

such as infection.

Intrapartum asphyxia (described as the presence of an elevated base deficit) occurs in

approximately 20 per 1000 births. It is generally asymptomatic. However, when followed

by signs of moderate or severe encephalopathy, permanent handicap or death are relatively

7
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common; 20-30% of fetuses with moderate HIE and 72-80% of fetuses with severe HIE

experience serious handicap, as shown in Table 2–2. It is generally thought that episodes of

hypoxia in excess of one hour are required before such neuropathologic damage responsible

for motor and cognitive deficits develop [34].

CP is a group of conditions associated with developmental disorder, and has an inci-

dence of 1.5-2.5 per 1000 births. It results from brain lesions or abnormalities occurring

early in development and can be traced to HIE in approximately 10% of the CP population.

These insults cause motor impairment that neither resolves nor progresses, characterized

by muscle attributes of spasticity, increased tone and reflexes, and altered resistance to

stretch. CP can result in delayed acquisition of motor skills, clumsiness, gait/ambulatory

difficulties and is often co-occurring with epilepsy and cognitive deficiency. It is usually

diagnosed between the ages of 2 and 5 years [68].

Condition Incidence (/1000 live births)

Intrapartum Asphyxia (BD > 12) 20
Neonatal encephalopathy 1.8 - 7.7 (1.0 due to HIE)
Cerebral Palsy 1.5 - 2.5 (0.15 - 0.5 due to HIE)

Overall neurological mortality/morbidity 50 - 70
Table 2–1: Incidence of neuropathology. BD refers to post-natal umbilical cord arterial
base deficit. [63, 68]

HIE Severity Mortality Serious handicap

Mild Near 0% Near 0%
Moderate 5.6-14% 20-30%

Severe 61% 72-80%

Table 2–2: HIE Outcomes [20,35,57]

The costs of neurological impairment of newborns are clearly significant for the indi-

vidual, their families and for society as a whole. As shown in Fig. 2–1, potentially avoidable

events are associated with the injury pathway asphyxia-HIE-neonatal encephalopathy. Also

8
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Figure 2–1: Pathways to neuropathology from the fetus in labour and delivery to neonate.
Arrow widths indicate relative incidence. The Asphyxia-HIE-Neonatal Encephalopathy
injury pathway occurs during labour and is potentially preventable.

note that due to variability in 1) the degree and duration of insult; and 2) the robustness

of the fetus, not all episodes of perinatal asphyxia are severe enough to cause injury, as

shown by the pathway asphyxia-healthy. The pathways to neurological pathology are not

restricted to labour and delivery events. Chronic, or underlying pre-labour conditions may

cause neurological impairment themselves or render the fetus more susceptible to experi-

ence intrapartum oxygen deprivation. The other injury pathway non-asphyxia-preexisting

or post-natal-neonatal encephalopathy involves conditions that precede or follow labour and

delivery (i.e. not intrapartum asphyxia).

However, autopsy and neurological imaging in the early neonatal period indicates that

the great majority (> 80%) of neonates with HIE have only acute injury or intrapartum

9
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lesions without evidence of chronic lesions [13]. Therefore, improving policies of care where

there are potentially preventable adverse outcomes is clearly a worthwhile effort.

2.1.2 Intrapartum asphyxia

Biochemical mechanism

Biochemically, intrapartum asphyxia can be seen as a gradual diminishing of the buffer-

ing response to rising acidity, due to impaired gas exchange. Fig. 2–2 shows the equilibrium

equation of the main buffering action involving bicarbonate (HCO3−), and how it can be

disrupted. As tissue and blood CO2 levels rise (i.e., a rise in CO2 concentration on the

left side of the equation), the primary buffering agent bicarbonate is consumed, in the

presence of the catalyst enzyme Carbonic anhydrase, to maintain pH levels (i.e., to reduce

H+ concentration on the right side of the equation). In this context and under conditions

of aerobic metabolism, the buffering action may begin to lag behind rising CO2 levels, and

mild respiratory acidosis can occur. But under increased fatigue and lowered O2 supply,

anaerobic metabolism develops, adding lactic acid to the buffering requirements. Under

these more extreme conditions, termed metabolic acidosis, the buffering capacity can be-

come overwhelmed. Consequently, the pH falls and the bicarbonate buffer stores become

depleted. Thus if fetal respiration is malfunctioning, persistent respiratory acidosis will

lead to metabolic acidosis.

CO2 + H2O
Carbonic−−−−−−⇀↽−−−−−−
anhydrase

H+ + HCO−
3 (bicarbonate buffering)

�� Lactic acid

Figure 2–2: Disruption of buffering during metabolic acidosis.
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Etiology

The causes for intrapartum asphyxia fall into three categories: maternal, fetal and

placental. All relate to effective O2 and CO2 transport; this can be compromised by

the maternal or fetal circulatory systems or in the ability of these systems to exchange

materials. Maternal factors are outlined in Table 2–3. These can involve the integrity

of the circulatory system due to disease or trauma, disorders of the blood, inability of

the heart to maintain adequate cardiac output, or cardio-respiratory disease. Factors

related to the fetus are shown in Table 2–4. The effectiveness of the umbilical cord is

of paramount importance. The cord may be compressed due to 1) insufficient amniotic

fluid (oligohydramnios) which normally surrounds and protects the fetus, to 2) cord loops

(especially around the neck, termed nuchal loops), or to 3) prolapse, where the cord falls

into the birth canal ahead of the fetus. Feto-maternal hemorrhage, fetal blood and fetal

heart disorders can also play a role. Finally the placenta, the site of material exchange,

can be compromised by separation from the uterus (abruption), insufficient size, lack of

vascularization in development, arterio-venal shunting, and obstructions (infarcts).

Category Condition Source

Blood circulation hypotension, hypovolemia hemorrhage, vasovagal attack, drugs
(eg. epidural), vasoconstriction

Blood disorders O2 transport compromise anemia, hemoglobinopathy
Heart heart failure coronary artery disease, valvular

dysfunction, malformations
Lung O2 uptake compromise asthma, pneumonia, pulmonary em-

bolus, pulmonary edema
Table 2–3: Maternal factors contributing to intrapartum asphyxia

Risk factors and markers

During the prenatal period, there are numerous risk factors associated with intra-

partum asphyxia. On the maternal side, bleeding, lowered O2 or blood-pressure levels
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Category Condition Source

Blood circulation cord compression oligohydramnios, knots, prolapse,
nuchal loops

feto-maternal hemorrhage vascular malformation, micro-
vascular leakage across the placental
villus, trauma

Blood disorders O2 transport compromise anemia, hemoglobinopathy
Heart heart failure malformation

Table 2–4: Fetal factors contributing to intrapartum asphyxia

can indicate inadequate maternal blood supply to the placenta. Fetal indicators can in-

clude growth restrictions (measured by ultrasound), poor response to tactile stimulation

or vibro-acoustic stimulation, and meconium passages. Measurement of FHR is normally

non-invasive except in the cases when it is derived from a fetal-scalp electrode. Measured

ECG (especially the ST segment [12,54,62]) and direct measurement of oxygen saturation

via pulse oximetry [6, 22] require intra-uterine access to the fetus and provide diagnostic

information, but do not have widespread acceptance in clinical practice. The post-natal

infant can undergo more direct examination. Apgar scores are routinely calculated from

qualitative assessments (presence of breathing, muscle tone, reflexes, etc.) to give an initial

overall indication of the neonatal vigour.

Markers of neonatal encephalopathy and measurement of arterial umbilical cord pH

and base deficit give a more specific indication of neuropathology and a more quantitative

measure of exposure to hypoxia. The presence of neonatal encephalopathy and umbilical

cord base deficit will be used as markers of outcome in this thesis. Bicarbonate buffer

concentration is readily calculated using the bicarbonate buffering equation of Fig. 2–2

using measurement of the blood H+ concentration (1/pH) and the partial pressure of

CO2 (H2O concentration is considered constant). ‘Base deficit’ refers to the reduction

in bicarbonate concentration compared to normal conditions. There is a growing body
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of evidence that the threshold of metabolic acidosis beyond which newborn morbidity or

mortality may occur is a base deficit of 12-16 mmol/L [37].

2.1.3 Overall circulatory responses to hypoxia

In the laboratory animal studies, fetal hypoxia can be induced by either reducing the

maternal blood oxygenation (hypoxemia) or by reducing the umbilical cord blood flow by

maternal vascular occlusion (e.g. of the uterine artery) or by occlusion of the fetal vessels

in the cord itself. All have the effect of reducing O2 delivery to the fetus, but there are

different redistribution patterns of the fetal blood to maintain or increase O2 delivery to the

vital central organs (the heart, brain and adrenals) in response to the stress. In the case of

maternal hypoxemia, fetal blood flow to the central organs is increased to the degree that

O2 delivery is also markedly increased, while for other organs and the periphery (muscle,

skin, bone), blood flow and O2 delivery is diminished. In the case of vascular occlusion,

the fetus attempts to maintain central organ O2 delivery with modest increases in blood

flow to the central organs while elsewhere flow is maintained (apart from the lungs) but

with reduced O2 delivery [64].

Extreme conditions of sustained acute asphyxia (e.g. by complete cord compression)

can only be tolerated for about four minutes, after which severe acidosis leads to the

demise of fetal sheep [30]. This estimate of the survival horizon should be seen in the light

of typical clinical conditions; cord occlusion of the human fetus during uterine contraction

is intermittent and most often partial rather than complete.

These changing fetal circulation patterns are accompanied by other circulatory control

mechanisms. While adults respond to acute hypoxia with transient tachycardia, the fetus

responds with deceleration. This is followed by hypertension and under very severe condi-

tions of prolonged hypoxia, subsequent hypotension. As hypoxia progresses to acidosis, the

intrinsic myocardial contraction rate is reduced while at the same time cardiac efficiency
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is impaired; together these compound the impact of the other deceleration mechanisms on

cardiac output. These neural mechanisms will be discussed in detail in the next section.

2.1.4 Fetal neural response to hypoxia

Four main neuro-mechanisms govern the fetal response to acute hypoxia. The most

important effect of these control mechanisms is transient bradycardia, clinically known as

deceleration, which can last from about 15s to several minutes. Vagal (parasympathetic)

mechanisms are primarily responsible for the earliest onset of heart rate decrease. The two

main afferent pathways are arterial chemo-receptors and baro-receptors which respond to

the decreased partial pressure of oxygen in the blood and increased arterial blood pressure,

respectively. Both transmit through the brainstem vagal center to efferent nerves acting

on the sinoatrial node to depress heart rate, and both responses are enhanced by increased

degree and duration of hypoxia. When severe hypoxic conditions exist, direct myocardial

depression begins, reducing the intrinsic myocardial cell contraction rate in addition to the

effects of extrinsic control mentioned previously. Finally, sympathetic mechanisms play a

role in increasing heart rate via chemo-receptors, both at the onset of an episode of hypoxia,

as well as during recovery. Their effects are enhanced by increasing hypoxia [51,94]. Figure

2–3 illustrates the major pathways.

A spectrum of deceleration morphologies, therefore, are possible from these combined

mechanisms. Short and steep decelerations (referred to as ‘variable’ by clinicians) are

presumably primarily baro- and chemo-receptor mediated while ‘late’ decelerations are

associated slower responses, with myocardial depression causing the most delay. Deceler-

ations accompanied by acceleration at recovery (known clinically as ‘overshoot’) may be

indicative of central nervous system dysfunction [21].
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Figure 2–3: Neural responses to hypoxia are chemo- (path 1 and 3) and baro- (path 2)
reflex responses and direct myocardial depression (path 4) (from [51]).

2.1.5 Clinical relevance of FHR features

The clinical relevance of some FHR signal characteristics is well understood. The av-

erage FHR level, or baseline, reflects the cardiac output; a value within the range 120-160

beats per minute (bpm) indicates that blood delivery is adequate. Small, random fluctua-

tions around baseline (normally 5-15 bpm), known as FHR variability (HRV), indicate that

the central nervous system is intact and providing a healthy modulating influence [2, 21].

Temporary decreases in FHR (from 15 s to several minutes in duration and > 15 bpm

in amplitude) are known as decelerations and reflect events such as compression of the

umbilical cord by uterine contractions, malfunction of the fetal heart muscle, or premature

separation of the placenta. Generally, larger insults are indicated by recurring episodes

of deep, long decelerations whose onsets occur late with respect to the uterine contrac-

tions. Temporary increases in FHR (> 15 s, > 15 bpm), called accelerations, accompany

fetal movement and are generally thought to indicate a healthy state.
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FHR interpretation in this framework suffers numerous limitations, most notably inter-

and intra-subject variability. In addition it only partially reflects the fetal-state and is thus

a non-specific descriptor. False positive interpretations result in unnecessary intervention

(emergency Cesarean section) and interpretation delays can result in hypoxic injury [15].

Some have questioned its effectiveness compared to intermittent auscultation via stetho-

scope [76]. Nevertheless its non-invasiveness and perceived sensitivity have made it the

standard of care in North-American and European hospitals.

2.2 Scientific-engineering literature

2.2.1 Feature detection

There have been numerous studies in the literature that describe fetal-state assessment

based on computerized interpretation of the CTG signal. By far the majority of these have

been based on a paradigm of detection and estimation of the clinical CTG features described

above. Feature attributes are selected to mirror visual interpretation of the obstetrician

and assumed physiological events.

Such CTG analysis is hampered by the fact that the UP and FHR signals are very

noisy. This is especially true when the signals are collected under clinical conditions, as is

the case for our data. Because the sensors are attached to the maternal abdomen, there

is often a problem of sensor contact or missing data when the mother wishes to be more

mobile and is temporarily detached from monitoring. These sensor disturbances result in

frequent artifacts where the signal drops to a lower value in both the UP and FHR. As well,

UP is acquired with a pressure sensor and so is especially sensitive to contact variations.

The FHR can also include interference from the maternal heart rate causing the signal

to drop to a much lower value. These disturbances pose significant challenges to CTG

analysis.
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A simple moving-average of the FHR is used most often as a simple estimate of the

FHR baseline. The more elaborate rules of Dawes [14] and Mantel [47] are also common

since they tend to be less biased by asymmetry of the excursions of accelerations and

deceleration (decelerations tend to be deeper). I described another rule-based approach

developed at LMS Medical Systems Ltd. which uses a measure of the local variability

to set adaptively the allowable excursion about an assumed baseline level. This baseline

estimate compared favourably to clinical annotation of the baseline signal [80].

Accelerations and decelerations are frequently detected and measured as is the tem-

poral relationship of decelerations to uterine contractions. Again the rules of Mantel [48]

were one of the first standards in the field. They used fixed thresholds of depth and du-

ration of excursions around their baseline estimate as decision criteria. The superiority

of non-linear classifiers to thresholding approaches has been shown with several neural-

network-based systems. Rosen [61] used a 10min window of raw FHR (300 samples) as

a feature vector and saw improved performance of a multi-layer-perceptron (MLP) neural

network over a decision-tree classifier. Using raw FHR and measured deceleration fea-

tures with a recurrent neural-network classifier, Ulbricht [78] reported even better results.

I have reported three classifiers that use a bank of band-pass filters to collect candidate

decelerations. From these candidates, clinically informed features [80] or discrete-cosine-

transform (DCT) features modelling the spectrum [91] were calculated and used to train

an MLP neural-network. These results (receiver-operator characteristic area under curve

0.935) were similar to the best results of Ulbricht’s recurrent network, except that they

were based on a larger dataset (161 cases).

The standard clinical measure of variability–the peak-to-peak deviation about baseline–

often forms a simple estimate of the FHR variability in computerized systems. The FHR

standard deviation is also used widely. A host of other heart-rate-variability estimates have
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been proposed to obtain more information than these simple measurements describe. Spec-

tral analysis is often used, with autoregression (AR) modelling, based on optimal linear

Wiener filtering, being most common [9,72].

It is common in heart-rate variability analysis to use the raw beat-to-beat (or ‘RR’)

intervals rather than the derived heart-rate which is a zero-order sampling of the RR inter-

val. Some samples are delayed and some are repeated by this sampling, adding jitter to the

FHR measurement and having the effect of low-pass filtering in the spectrum. Numerous

researchers have pointed out the superiority of spectral estimates from the RR interval in

terms of information content due to the low-pass filtering effect [11,33].

Variability has also been estimated by wavelet spectral analysis in order to obtain

the frequency response at non-uniform resolution [32, 66, 96], appropriate for the multi-

resolution nature of the FHR frequency content. The response of heart-rate variability

to contractions has also been investigated [55, 60]). Of particular interest to this thesis,

Romano found that there were FHR responses to contractions at frequencies quite different

from the contractions themselves, and with frequency-dependent lags; in other words, a

non-linear input-output response.

More recently, drawing from the well-developed literature in chaos and adult heart-

rate variability, various measures of entropy have appeared which attempt to measure the

divergence from regularity or determinism of the FHR signal. Pincus first pointed out

the potential for distinguishing acidotic from non-acidotic fetuses from the approximate

entropy measure [58]. Since then it has been used in many studies to distinguish normal

and pathological conditions (e.g. [50, 97], with researchers at the Politecnico di Milano

being most active (Signorini 1989-2006 [4, 9, 18,19,38,41–46,69–73]).
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2.2.2 Models

Apart from the prevalent use of AR modeling for FHR, other related models have also

been proposed. Cazares used a 10-th order AR model of UP [8] to improve contraction

detection by obtaining better estimates of the signal energy in the known contraction

frequency band. An earlier, oft-cited study [29] proposed a multi-stage model of FHR

variability including a 2-pole AR model, a second-order non-linearity, and a first-order

difference noise term to simulate the jitter of FHR resampling from RR. Then they used an

extended Kalman filter to obtain maximum likelihood estimates of the 7 model parameters

from 1 min of data. This study is significant because it demonstrated 1) the usefulness of

non-linear autoregressive models of variability; and 2) a model that was flexible enough to

account for the distortion of the RR to FHR resampling. See Fig. 2–4 for a schematic of

this arrangement.

Figure 2–4: A non-linear model of heart-rate variability consisting of a two-pole AR model,
a second-order static non-linearity, and noise sources, included FHR resampling jitter noise,
modelled as a first-order difference. The models are driven by independent Gaussian white
noises a(t), w(t) and v(t). From Jarisch et. al 1980 [29].

2.2.3 Classification

Attempts to classify the fetal state based on feature detection have used domain-

specific rules [10, 16], standard linear methods such as linear and logistic regression [7],
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and linear-discriminant analysis [26]. However, linear or rectangular partitioning of a

multidimensional feature space is often insufficient when applied to the complex boundaries

of most classification problems. Non-linear methods are therefore more common: multi-

layer perceptron neural networks, fuzzy-logic systems and support-vector machines have

all been applied to this problem. However, these methods are usually static; they do not

include a notion of how recent events in the past affect the present (i.e. state dynamics),

which is very likely important to model in an evolving non-stationary environment such

as labour. Accordingly, hidden-Markov models, which have seen widespread use in speech

recognition because of their ability to infer state (words or phonemes) from observations

(acoustical measurements), have also been to applied to dynamic fetal-state estimation [23].

Table 2–5 summarizes selected automated fetal-surveillance research that addresses

both the feature and classification problems as described in previous paragraphs. Several

issues are apparent upon examination of these efforts. One is that performance measures

often do not meet the minimum requirements for clear conclusions to be made since re-

sults are reported without explicit use of independent test data [7, 10, 65]. Secondly, the

criteria for outcome class labeling can be quite subjective (e.g. clinician assessment of the

signal [7,31,74]) or far from a gold standard (e.g. fixed rules [40]). In other cases, represen-

tative examples from entire classes of the population are removed making the performance

measure of questionable relevance (e.g. [38] removes all pathological cases except for in-

trauterine growth retardation (IUGR) pregnancies and discriminates these from normal).

In the majority of these efforts, a paucity of data is apparent (and generally recognized

by authors); sample sizes of less than 100 cases are common. The larger databases in the

studies of Elliott [17] and Jezewski [31] are exceptions in that regard; consequently their

results should be more accurate. Given the difficulty of the problem of CTG interpretation
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for clinicians, it seems probable that the ‘experience’ of larger databases will be required

for machines to distinguish between the patterns of normal and abnormal fetal labour.

2.2.4 Thesis approach and rationale

Drawing from this rich backdrop of accumulated research, this thesis will:

• use outcome-class labelling that is as objective as possible. The CTG database pro-

vided by LMS Medical Systems, Inc. satisfied this objective since it includes as fetal

attributes the base deficit and signs of neonatal neuropathology. These are some of

the best early neonatal indicators of fetal hypoxic distress.

• be data-driven: model the data as much as possible rather than choosing features

a-priori and in so doing extract as much of the information content as possible.

• obtain the most informative input-output models from UP and FHR. While coarse

measures of UP-FHR interaction have been described, this thesis is the first to propose

a system-identification approach to the problem.

• report performance using an independent test set, using multiple k-fold cross-validation

simulations whenever possible so that all performance estimates also include confi-

dence levels.
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CHAPTER 3
Methodological background

3.1 Database of CTG signals

This thesis used a database of intrapartum CTG recordings provided by LMS Medical

Systems, Inc. The cases in this database were screened to include only pregnancies having

a birth gestational age greater than 36 weeks and having no known genetic malforma-

tions [27]. Only records with at least 3 hours of recording were considered. All data was

provided in compliance with institutional regulations.

We labelled each recording by outcome according to its arterial umbilical-cord base

deficit and neonatal indications of neurological impairment. An elevated base deficit mea-

surement is an important indicator of metabolic acidosis large enough to cause neurological

injury [37, 39, 56]. The majority of the recordings were from normal fetuses (base deficit

< 8 mmol/L); the rest were severely pathological (base deficit ≥ 12 mmol/L, death or evi-

dence of hypoxic ischemic encephalopathy). The proportion of pathological cases was much

higher than their natural incidence [2, 3, 15].

Data collection was performed by clinicians using standard clinical fetal monitors

to acquire the CTG. The monitors reported at uniform sampling rates of 4 Hz for FHR

(measured in beats per minute (bpm)) and 1 Hz for UP (measured in mmHg), which we

up-sampled to 4 Hz by zero-insertion and low-pass filtering. In the majority of cases, the

UP or FHR sensors were attached to the maternal abdomen; the FHR was acquired from

an ultrasound probe and the UP was acquired by tocography. In a few exceptional cases,

they were acquired internally via an intra-uterine (IU) probe and/or a fetal-scalp electrode.
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UP acquired by an IU probe is considered the gold-standard measurement. Tocography,

on the other hand, is not precisely calibrated; its amplitude depends on the pressure sensor

contact and abdominal tissue thickness [79]. Additionally, tocography underestimates the

duration of contractions [52]. As a result, the uterine contraction onset in the UP signal is

delayed with respect to that acquired by an IU probe.

3.2 Introduction to system identification

It is well known that the primary physiological mechanisms for FHR decelerations are

1) contraction-induced umbilical-cord compression and 2) contraction-related decreases in

oxygen delivery through an impaired utero-placental unit. Furthermore there is a general

consensus that deceleration frequency and timing with respect to contractions can be an

indicator of the ability of the fetus to withstand these types of insults. Hypothesis-driven

modeling from these facts would focus on contraction-deceleration detection and gross es-

timates of timing between these events. However, it is also possible to redirect attention

to the interactions between the UP and FHR signal pair, which can be viewed as the

maternal stimulus and fetal response. It would be natural to model this signal arrange-

ment as an input-output system where the fetus is the ‘system’ that senses the UP and

reacts with changes to the FHR. In this way, contractions, decelerations and their temporal

relationships (and possibly other phenomena) are implicitly rather than explicitly modeled.

This investigation studied the feasibility of generating input-output models of UP

and FHR, as shown in Fig. 3–1, using linear system-identification techniques. We used

the CTG database to generate models of the system impulse response over several hours

of data collection. We analyzed the evolution of these models over time and compared

models of normal and pathological cases. The ultimate purpose of the model is to describe
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more fully the maternal-fetal interaction available via CTG. The input-output modelling

procedure will be described below.

u // ĥ
ŷ − // GFED@ABC+

e //

y

OO

Figure 3–1: General linear input-output model

In the general depiction of system identification in Fig. 3–1, the estimated system ĥ

responds to the input UP signal u and forms an estimate of the output FHR ŷ. When the

estimate is imperfect, the residue signal e is generated, where e is defined as the difference

between the true and estimated FHR signals y − ŷ. A quality measure of the estimated

model is the percent variance accounted for (%VAF) defined as

%VAF = 100 ×
(

1 − σ2e
σ2y

)
(3.1)

where σ2e and σ2y are the variances of the residue and desired signals, respectively. Lower

residual energy thus corresponds to higher %VAF values.

The fact that the variables are shown above in bold indicates that they are vector

quantities. Indeed, a linear dynamic model of the finite-impulse-response (FIR) type is

one in which the output estimate ŷn at sample n, is a function of M previous inputs

uT
n = [un un−1 . . . un−M+1]. The model is dynamic in the sense that it depends on the

recent history of inputs. Ideally the desired output yn can be written as a linear convolution

of the inputs with some unknown vector h = [h0 h1 . . . hM−1]
T :

yn = h ∗ un

= h0un + h1un−1 + · · · + hM−1un−M+1 (3.2)
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If it is assumed more realistically that the output is corrupted by the measurement-

noise signal v, the measured output can be written as z = y + v. Better estimates of h

can be calculated over a time period with multiple output samples, written succinctly in

matrix form for an analysis of N input and output samples as z = Uh + v where

z =




z1

z2
...

zN




and U =




u1 0 . . . 0

u2 u1 . . . 0

...
...

. . .
...

uN uN−1 . . . uN−M−1




(3.3)

The least-squares estimate of h is then given by: [95]

ĥ = (UTU)−1UT z

≈ Φ−1
uuφuz (3.4)

where, for N � M , UTU (the Hessian H) and UT z are approximated by the input au-

tocorrelation matrix Φuu and the input-output cross-correlation φuz, which are readily

calculated.

3.3 Introduction to classification with support-vector machines

Consider a set of labelled data with a number of attributes (the training set) and

another set of data with the same attributes but unknown labels (the test set). In machine

learning, classification refers to the problem of inferring the unknown labels of the test set,

given the training set. Fig. 3–2 illustrates this for our problem domain of inferring fetal

state from CTG signals. The training database consists of n UP-FHR signal pairs, which

are described by the attributes of some modelling process. In our case, these attributes are

derived from the system identification model ĥ parameters described above. With these

attributes and known fetal outcomes, the learning procedure determines a classifier that
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maps attributes to decisions. This classifier can then be used to form decisions about the

test data for which the label is unknown (for example, in an intra-partum clinical context).

Test
data

UP //

FHR //
Modelling // Classifier

Decision //

Training
database

UP1...n //

FHR1...n //
Modelling // Learning

OO

Outcome1...n

OO

Figure 3–2: Classification applied to inferring fetal state from CTG signals

We chose support-vector machine (SVM) classification because it gives state-of-the-

art performance, is robust to overfitting, and computationally efficient implementations are

available. SVM learning algorithms process labelled data to determine an optimal decision

boundary. This boundary is represented using a subset of the data called the support

vectors. The decision boundary can be linear or nonlinear, depending on the kernel chosen.

We used a Gaussian kernel in this thesis to allow a nonlinear boundary. SVMs solve the

non-linear optimization problem of finding a hyperspace boundary between classes in a

given dataset such that the minimum distance of any class example from the boundary is

maximized. Fig. 3–3 shows an example of SVM classification.
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Figure 3–3: Example of SVM classification of two classes (red and blue) using a lin-
ear kernel. The gold and turquoise decision regions (corresponding to the red and blue
classes, respectively) are determined during learning. The two support vectors closest to
the boundary are outlined in black.
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CHAPTER 4
Journal article I: Feature extraction

Philip A. Warrick, Doina Precup, Emily F. Hamilton, and Robert E. Kearney. Fe-

tal heart rate deceleration detection using a discrete cosine transform implementation of

singular spectrum analysis. Methods of Information in Medicine, 46(2):196–201, 2007

4.1 Introduction

The focus of this paper is detection of FHR decelerations using a feature extraction

approach called singular spectrum analysis (SSA). SSA decomposes the FHR signal by

the Karhunen-Loève transformation to obtain a signal representation containing the main

eigenvectors with the majority of the signal energy. When this representation changes,

a change-point is considered to have occurred (in our case, a deceleration). We modified

the SSA algorithm to use the discrete cosine transform to approximate the KL transform

in far less computational time. As well, to adapt the algorithm to episodes of repeating

decelerations, we retained the signal representation that existed before the episode to detect

the full time extent of the decelerations. We referred to this modification of the SSA

algorithm as base-hold SSA and show that it improved deceleration detection.

This paper exemplifies approaches where the focus is on detection of features consid-

ered clinically important. By modelling the signal by SSA, however, this approach does

not simply mimic the signal analysis of the human expert, as many studies have done, but

represents the key characteristics of the signal in a more objective and orthogonal way.
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Fetal Heart Rate Deceleration Detection using a Discrete

Cosine Transform Implementation of Singular Spectrum

Analysis

Philip A. Warrick1,4, Doina Precup2, Emily F. Hamilton3,4, and Robert E. Kearney1

Abstract

We present a method for decomposing a signal into near-orthogonal components via the discrete

cosine transform (DCT) and apply this in a novel way to change-point detection based on singular-

spectrum analysis (SSA). The algorithm is applied to fetal heart rate (FHR) monitoring to improve the

detection of deceleration events.

I. INTRODUCTION

FHR monitoring provides an important diagnostic signal for the assessment of intra-partum fetal

condition. The FHR manifests several patterns that have postulated physiological significance (e.g.

variability, accelerations and decelerations) and visual recognition of these patterns is an important skill of

an obstetrician. Signal analysis of the FHR can be used to automate detection of these patterns although

the presence of noise and artifact pose significant challenges to success. This study will focus on the

deceleration event, a momentary decrease in the FHR that may last from 15s to 5 min. Detection of these

events is complicated by their varying length, morphology, and degrees of background variability as well

as the distracting presence of artifactual events.

Signal decomposition into orthogonal components is a standard approach for generating compact

representations of non-stationary signals. Singular-spectrum analysis (SSA) is one such method that

has been known since the original paper of Broomhead and King [1], but which has only recently been

Manuscript submitted May 23, 2005. Corresponding author: Philip Warrick (e-mail: philip.warrick@mcgill.ca). The authors

acknowledge the financial support of this work by LMS Medical Systems, Inc.
1Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada. 2School of Computer Science, McGill

University, Montreal, Quebec, Canada. 3Department of Obstetrics and Gynecology, McGill University, Montreal Quebec,

Canada. 4LMS Medical Systems, Inc., Montreal, Quebec, Canada.
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applied in a sequential manner suitable for on-line analysis [2]. The SSA technique uses the Karhunen-

Loève transform (KLT) to determine the main structure of the underlying signal. By restricting the

signal representation to the eigenvectors containing the majority of the signal energy, a compact signal

approximation can be extracted.

As their name implies, change-point detection algorithms attempt to detect the location of changes in

the characteristics of time-series data. Many such algorithms exist, but they have often been applied to

simple parametric models [3]. In [2] an on-line form of the non-parametric SSA change-point detection

algorithm is presented. The SSA produces an L-dimensional hyperplane from M-dimensional time-series

data (L ≤ M ); the distance of the M-dimensional vectors generating the model (and which form the

correlation matrix R) projected onto the L-dimensional hyperplane should be small. The change-point

detection is obtained by projecting recent data (i.e. data not used to generate the model) and applying a

decision rule to the distance from the hyperplane.

Electro-cardiogram (ECG) ST-segment analysis has used KLT in numerous settings to assess cardiac

condition. In [4] the KLT was used to characterize the ST segment of 2-channel ECG signal to detect

ischemic episodes. They use the first five KL coefficients as a feature vector whose trajectory over time

is monitored with reference to a mean feature vector. Stepwise transitions in the trajectory are considered

normal while smooth changes indicate a possible ischemic ST episode. In [5] the T-wave is characterized

over time by the first KL coefficient to detect sleep apnea.

This paper will briefly present the key concepts underlying KL decomposition. An efficient discrete

cosine transform (DCT) implementation of the on-line SSA algorithm will be described and applied to

the classification of deceleration candidate events from a database of FHR tracings (see Figure 1). To the

knowledge of the authors, no such DCT-based SSA implementation has been reported in the literature.

Fig. 1. Block diagram of overall processing. The second shaded block is the focus of this paper.
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II. BACKGROUND

A. KL decomposition

In general, given any set of orthonormal basis functions φn that span a linear vector space of dimension

N , any function f(k) in that space can be represented as [6]:

f(k) =
N−1∑

n=0

θnφn(k), 0 ≤ k ≤ N − 1 (1)

where the spectral coefficients θj are given by the inner product

θj =
N−1∑

k=0

f(k)θ∗j (k), 0 ≤ j ≤ N − 1 (2)

It is a well-known result that the KLT finds the set of basis functions that best represent the signal in a

mean-squared error sense. In addition, the decomposition of the signal with these basis functions is such

that 1) the mean-square error of a truncated representation is also minimized, 2) it has optimal energy

compaction: it contains the most variance (energy) in the fewest number of transform coefficients and 3)

it minimizes the total representation entropy of the sequence. The result of the minimization criterion is

that:

(R− λiIN )φi = 0, 0 ≤ i ≤ N − 1 (3)

where R = E[ffT] is the covariance matrix of the input signal f . This is called the eigenvalue problem

where λi and φi are the eigenvalues and the eigenvectors of R, respectively. The truncation error of

reconstruction is minimized when the eigenvalues are ranked in descending order.

The drawback of the KLT is that the basis functions are signal dependent and therefore cannot be

predetermined. In addition, finding the eigenvalues of R is a computationally intensive task, especially

as N becomes large. To overcome these impracticalities, the discrete cosine transform (DCT) is often a

viable alternative as it provides a good approximation to the KLT for many signals, while using a fixed

set of basis vectors. The DCT transform basis vectors are defined as:

θk =
1
cr
cos (2k+1)rπ

2N , 0 ≤ k, r ≤ N − 1,

where cr =





√
N r = 0

√
N
2 r 6= 0

(4)

The eigenvalue approximation from the calculation of DCT coefficients over n signal realizations of

length N is given by the average of the squared DCT coefficients [7]:

λj(n) =
1

n

n∑

i=1

C2
j (i), j = 0, 1, . . . , N − 1 (5)
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where Cj is the j-th DCT coefficient. It has been shown that for a stationary zero-mean, first-order

Markov process the DCT is asymptotically equivalent to the KLT as the sequence length increases and

as the adjacent correlation coefficient ρ tends to unity [7]. The DCT is therefore near optimal for many

correlated signals encountered in practice and fast algorithms exist for its calculation; indeed it is the

industry-standard in image and speech transform coding [6].

B. On-line SSA change-point detection

For a time series x1, x2, . . . , xN , let M be an integer called the lag, where M ≤ N
2 and let K =

N −M + 1. Define the M ×K Hankel matrix

X = [X1X2 . . . XK ]

=




x1 x2 . . . xK

x2 x3 . . . xK+1

...
...

. . .
...

xM xM+1 . . . xN




(6)

where xij = xi+j−1. X can be considered as multivariate data with the M rows as characteristics and

the K column vectors Xj as observations. Defining the M ×M lag-covariance matrix R = XXT and

calculating its singular value decomposition (SVD), we determine the orthonormal eigenvectors Ui and

eigenvalues λi, i = 1, 2, . . . ,M such that RU = UD, where D is a diagonal matrix with λi along the

diagonal and U = [U1U2 . . . UM ].

The magnitude of the eigenvalue λi is equal to the variance in R spanned by (or energy content of)

the eigenvector Ui[6]. In our case, given the orthonormal set of eigenvectors Ui, reconstruction of Xi is

possible by summing the product of the spectral coefficients (the inner products of Xi and Uk) and the

eigenvectors:

X ′i =
L∑

k=1

(Xi ·Xk)Uk, 0 ≤ L ≤M (7)

If L =M we have perfect reconstruction while for L < M approximations to Xi are formed using the

L eigenvectors having the highest eigenvalues. The assumption made by the SSA algorithm is that given

an appropriate choice of L, the reconstruction will tend to correspond to signal while the residue energy

(for the unused terms L + 1, . . . ,M ) will correspond to noise. The residual energy er is calculated as

the difference in Euclidean norms:

er(Xi) = ‖Xi‖2 − ‖X ′i‖2 (8)
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The SSA algorithm for change-point detection calculates the basis functions over a base interval and

evaluates the residual energy of the reconstruction of another interval called the test interval. The intervals

are shifted in time across available samples and the residual energy is calculated for each shift. Specifically,

the base and test intervals are used to construct corresponding base and test matrices as follows. For time

shift n, the X matrices have the following form:



xn+1 xn+2 . . . xn+K

xn+2 xn+3 . . . xn+K+1

...
...

. . .
...

xn+M xn+M+1 . . . xn+N




︸ ︷︷ ︸
K-vector base matrix

(9)




xn+P+1 xn+P+2 . . . xn+P+Q

xn+P+2 xn+P+3 . . . xn+P+Q+1

...
...

. . .
...

xn+P+M xn+P+M+1 . . . xn+P+Q+N




︸ ︷︷ ︸
Q-vector test matrix

(10)

where P is the position of the test interval relative to the beginning of the base interval and Q is the

number of observations taken from the test interval.

The difference metric at sample n is given by the summation of the residual energies of the test matrix

vectors

Dn =
n+P+Q∑

i=n+P+1

er(Xi) (11)

where the basis functions Ui for the reconstruction are calculated from the base matrix. This difference

metric is then adjusted by an estimate of the underlying noise energy, taken as the difference metric of

the base matrix where the last null hypothesis H0 (no change) occurred: i.e. m is chosen as the largest

value of m ≤ n under H0:

Sn =
Dn

vn
where vn =

m+K∑

i=m+1

er(Xi) (12)

If vn is considered an estimate of the variance of the noise at sample m (where it is assumed that there is

very little signal energy), Sn normalizes the distance metric such that it is not depend on this (assumed

unknown and possibly non-stationary) quantity.

It is difficult to select a threshold for the change statistic that could apply to an arbitrary sequence.

Nonetheless, under some simplifying assumptions, it is shown in [2] that the following broad rule applies:
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when the distribution of the change statistic Dn is assumed to be Gaussian, a threshold can be chosen

such that the probability of an event under H0 is approximately α, where α > 0 is a significance level. In

[2] the correspondence of α to a threshold h of the S statistic is elaborated, and we use this h calculation

in the subsequent discussion.

C. FHR database and candidate detector

The database for this study consisted of 15 FHR tracings containing 535 decelerations as marked by

an expert obstetrician. We have described in [8] an approach that uses filtering to detect deceleration

candidates. The filtering stage consists of a bank of band-pass filters responsive to decelerations over

various overlapping frequency ranges. Candidate events, whose extent corresponds to the zero-crossings

of a particular band-pass filter, are placed in a competition with overlapping events generated by the

other band-pass filters, and only the highest amplitude events survive. This detector detects 528 of the

535 decelerations of the study database, although it also detects 1285 false positives. One of the goals

of this study is to improve on the discrimination of the candidate detector.

III. METHODS

A. SSA Change Point Detection: Block DCT implementation

While the DCT implementation provides some reduction of the processing load compared to the KLT,

further improvements were made by using a block implementation of the DCT version of the algorithm.

Because the DCT eigenvalue approximations are summations of the DCT coefficients of the observation

vectors (eqn. 5), a recursive calculation at each time sample is possible [7]:

λj(n) = λj(n− 1) + 1
N (C2

j (n)− C2
j (n−N)),

j = 0, 1, . . . , N − 1
(13)

Performing the DCT calculations in block fashion produced a more efficient SSA implementation. For

one typical FHR segment of approximately 2400s duration, a 40-fold decrease in the SSA processing

time was observed with the block implementation (from 1000s to 25s) compared to repeated and highly

redundant DCT calculations at one-sample time shifts of the analysis block.

Using several calibration FHR tracings, we observed good agreement between the KL and DCT

implementations of the SSA algorithm (see one example in Figure 2). Some higher frequency spikes

are better resolved by the KLT, but the responses are otherwise similar.
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Fig. 2. The lower plot compares the KLT (dashed) and DCT (solid) implementations of the SSA statistic S. The input FHR

appears above.

B. SSA Parameter selection

The SSA algorithm is quite parameter-sensitive. Perhaps the single most important parameter for

selection is the observation length M . Our preliminary investigations suggested that M should be chosen

to be of similar duration to the event of interest. The significance level of the threshold h for the SSA S

statistic was set to values close to α = 0.1 (as suggested in [2]). The number of observations K needs to

be large enough to create a relatively stable base interval representation but not so long as to smooth out

distinct regions of quasi-stationarity [2]. The other main choice is the P value: whether to place the test

interval within the base interval or following it. Embedding the test interval in the base interval has the

advantage of including the before- and after-event signal in the determination of the base matrix, which

may be appropriate for the typical deceleration event that is preceeded and followed by some common

steady state. On the other hand, placing the test interval after the event should accentuate the difference

between the base and test intervals since no test signal is included in the base matrix calculation. We

used the latter approach in the experiments that follow. The length of the test interval Q was chosen to

be somewhat smaller than M (e.g. Q = M
4 ) and the number of eigenvectors L was kept as small as

possible (e.g. L = 5) since often the most important changes occur in the highest energy components.

C. SSA on candidate detected FHR

Using the location of previously detected deceleration candidates focused the analysis by matching the

M value to the event duration and reducing the search space significantly. Given the set of candidates,

local SSA was done in the vicinity of each candidate, using the candidate length for the SSA observation
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length M in each case (i.e. as an estimate of the true event length). For larger values of M , the processing

burden was excessive and for this reason the data was decimated. The decimation factor was determined

by the ratio of the event length LC to the minimum event length LM of 15s, i.e. the decimation factor

is defined as D = round(2LC/LM ), where round(·) denotes rounding to the nearest integer. With the

minimum candidate length restricted to 15s, the number of decimated samples LD = round(LC/D) falls

into the range of 25 to 37 samples. Thus the results of the analysis are relatively scale-invariant over a

broad range of event durations. The SSA analysis begins and ends at fixed factors of M before and after

the event, chosen in a way to give sufficient context to the analysis of the event. By experimentation,

we found that factors of 16 and 8, respectively, provided enough context without incurring excessive

decision delay.

D. Base-hold SSA

The standard SSA algorithm encounters difficulty in intervals where repeated decelerations occur in

close proximity. Under these conditions the first events of the series may be recognized, but subsequent

events are not since the base and test intervals tend to contain similar energy (i.e. of morphologically

similar decelerations) as analysis progresses forward in time. To address this, we modified the algorithm to

hold the base interval constant when changes are detected until the next null hypothesis H0 is encountered.

For these conditions, Figure 3 illustrates how holding the SSA base interval to the last H0 interval can

improve detection. The standard SSA base interval BS contains an event, reducing its distinction from

the test interval T . The base-hold interval BH , having less low-frequency energy, is retained as the base

interval for the successive event candidates, and the energy difference between BH and T is sufficient

to signal a change-point.

Fig. 3. Example base-hold. For the sixth event of Figure 4, the locations of the base intervals for the standard and base-hold

SSA are shown between dotted vertical lines as BS and BH respectively. The test interval is indicated by T .
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TP In FP In TP

Missed

FP Re-

duc-

tion

Standard

SSA

528 1285 64 279

Base-hold

SSA

528 1285 49 278

TABLE I

SSA-DCT DECELERATION DETECTION RESULTS

IV. RESULTS

The results of the detection performance of the standard and base-hold SSA are shown in Table I.

The true and false positives (TP, FP) of the candidate detector are the input to the two variants of the

change-point detector. Both detectors reduced the number of false positives by approximately 21.6%

(279 or 278 of the original 1285). However, the base-hold approach had 23% fewer misses (49 vs. 64).

Thus for equivalent false-positive rates, the base-hold approach shows improved sensitivity over that of

standard SSA.

Figure 4 shows an example of repetitive deceleration patterns, which are problematic for standard

SSA. The base-hold SSA algorithm detects two decelerations that are missed by standard SSA. Both

approaches have the same false positives.

V. DISCUSSION

The standard SSA algorithm has been used successfully in many contexts where changes are infrequent

[2]. Our efficient DCT implementation of SSA is of general applicability to these problems, especially

where the processing data volume is large and the input signal is sufficiently correlated. In FHR analysis,

the assumption of infrequent changes does not always apply and our modifications improve the resolution

of single events within a series of similar events. While this has shown to improve overall results on our

dataset, it is also conceivable that a series of similar non-events can be wrongly classified as a group as

a result of this modification.

Rather than using this change-point detector in isolation in our FHR analysis, we are investigating

the incorporation of the SSA statistic into an ensemble of other features within a more comprehensive

classifier.
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Fig. 4. Example of a region of repetitive decelerations. The dotted vertical lines indicate the extents of candidate detector

markings. The lower and upper horizontal bars indicate the extents of the expert markings and SSA markings, respectively. The

standard SSA algorithm misses the sixth and eighth decelerations (marked by ×) whereas the base-hold approach detects them.

Both approaches have the same false positives (the second and third events).
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CHAPTER 5
Journal article II: System identification

Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kearney. Iden-

tification of the dynamic relationship between intra-partum uterine pressure and fetal

heart rate for normal and hypoxic fetuses. IEEE Transactions on Biomedical Engineering,

56(6):1587–1597, June 2009

c© 2009 IEEE. Reprinted, with permission.

5.1 Introduction

Hypothesis-driven modelling of CTG, based on an understanding of physiology and

clinical interpretation, has focused on contraction and deceleration detection in the face of

noisy signals, as in the previous paper.

This paper, which represents the core of the thesis, is a novel departure from these fea-

ture detection approaches; it focuses on the dynamic relationship between uterine pressure

(as an input) and FHR (as an output). We use a system-identification approach to estimate

system dynamics in terms of an impulse response function (IRF). Our system-identification

approach also incorporates noise suppression to address the challenge of analyzing very

noisy CTG signals. Such an approach has not appeared in the literature to date. This

resulting model represents very-low-frequency FHR energy (i.e., <0.03 Hz) linearly related

to UP and therefore is complementary to other components of the FHR normally studied.

We show that the models for normal and pathological cases is our database were quite

different, with pathological cases having stronger, more delayed and more predictable re-

sponses. While we used a novel modelling approach in this study, these results remained

consistent with clinical expectation.
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Identification of the Dynamic Relationship Between

Intra-Partum Uterine Pressure and Fetal Heart Rate

for Normal And Hypoxic Fetuses

Philip A. Warrick1,4, Student Member, IEEE, Emily F. Hamilton3,4,

Doina Precup2 and Robert E. Kearney1, Fellow, IEEE

Abstract

Labour and delivery is routinely monitored electronically with sensors that measure and record

maternal uterine pressure (UP) and fetal heart rate (FHR), a procedure referred to as cardiotocography

(CTG). Delay or failure to recognize abnormal patterns in these recordings can result in a failure to

prevent fetal injury. We address the challenging problem of interpreting intra-partum CTG in a novel

way by modelling the dynamic relationship between UP (as an input) and FHR (as an output). We use a

non-parametric approach to estimate the dynamics in terms of an impulse response function (IRF). We

apply singular value decomposition to suppress noise, IRF delay and memory estimation to identify the

temporal extent of the response, and surrogate testing to assess model significance. We construct models

for a database of CTG recordings labelled by outcome, and compare the models during the last three

hours of labour as well as across outcome classes. The results demonstrate that the UP-FHR dynamics

can be successfully modelled as an input-output system. Models for pathological cases had stronger, more

delayed, and more predictable responses than those for normal cases. In addition, the models evolved in

time, reflecting a clinically plausible evolution of the fetal state due to the stress of labour.

I. Introduction
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THE lifelong disability that can result from oxygen deprivation during childbirth is rare but devas-

tating for families, clinicians and the health-care system. The hallmark indications that significant

fetal cerebral hypoxia has occurred during labour are metabolic acidosis and neurological signs such

as altered levels of consciousness or seizures. Between 1 and 7 in 1000 fetuses experience oxygen

deprivation during labour that is severe enough to cause fetal death or brain injury [2]–[4]; the range of

this estimate reflects considerable regional variation and some clinical debate on the definition of brain

injury. Unfortunately, non-invasive methods to measure directly the fetal acid-base status and cerebral

oxygenation do not exist. Consequently, clinicians must rely upon indirect measures of oxygen delivery

and neurological function.

A standard approach is cardiotocography (CTG), which measures maternal uterine pressure (UP) and

fetal heart rate (FHR); these signals are the cumulative result of many concomitant physiologies. Visual

pattern recognition and inference are the basis of clinical interpretation. However, these are inconsistently

applied [5]. Furthermore, classical patterns have low specificity. Because significant hypoxia is rare, false

alarms are common, leading physicians to disregard truly abnormal signals. Indeed, approximately 50 %

of birth-related brain injuries are deemed preventable, with incorrect CTG interpretation leading the list

of causes [4], [6]–[8]. The social costs of such errors are massive: intra-partum care generates the most

frequent malpractice claims and the greatest liability costs of all medical specialties [9]. Thus, there is

great motivation to find better methods to discriminate between healthy and hypoxic conditions.

Clinicians’ interpretation of intra-partum CTG signals relies on the temporary decreases in FHR (FHR

decelerations) in response to uterine contractions. FHR decelerations are due mainly to two contraction-

induced events: 1) umbilical-cord compression and 2) a decrease in oxygen delivery through an impaired

utero-placental unit. There is general consensus that deceleration depth, frequency and timing with respect

to contractions are indicators of both the insult and the ability of the fetus to withstand it. Fig. 1 shows an

example CTG demonstrating this response, where an FHR deceleration follows shortly after the onset of

each of the four successive uterine contractions. Hypothesis-driven modeling based on this understanding

of physiology and clinical interpretation has focused on contraction and deceleration detection [10]–[15].

In this paper, we propose a new approach that focuses on the dynamic relationship between UP (as an

input) and FHR (as an output). Although the FHR is subject to numerous influences (i.e., it is the result of

a multiple-input system), UP is the only input that is accessible by external monitoring and routinely used

in clinical practice; indeed, clinicians already interpret certain UP-FHR relationships as indications of

pathology. We use a system-identification approach to estimate system dynamics in terms of an impulse

response function (IRF). This model represents very-low-frequency FHR energy (i.e., <0.03 Hz) linearly
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Fig. 1. CTG stimulus-response from 4 contraction-deceleration pairs over 10 min. (a) UP signal with contraction onsets (‘C’)

indicated. (b) FHR signal with deceleration onsets (‘D’) indicated.

related to UP and therefore is complementary to other components of the FHR normally studied. System

identification from CTG is a challenge because 1) measurement disturbances are prevalent; and 2) the

UP input has narrow bandwidth, is not calibrated, and is subject to unknown measurement delay.

Using a database of CTG recordings labelled by outcome data available after birth, we compared

IRFs over time (during the last three hours of labour) and with respect to their outcome classes (either

normal or pathological). We found that our method successfully modelled CTG, and that the models

were better for the pathological cases; these models consistently explained more of the output variance.

Model parameters were significantly different between the normal and pathological cases, with the latter

having IRFs with larger gain and longer delay (indicating a stronger and more delayed FHR response to

changes in UP). The models also evolved over time toward stronger and later responses; this progression

is consistent with other studies regarding the timing of acute intra-partum hypoxic injury [16]. These

results suggest that the model parameters could be useful for the automatic classification of the fetal state

(as we have done in other studies [17], [18] and detail in the discussion).

II. Methods

A. Data

We used a database consisting of 264 intrapartum CTG recordings for pregnancies having a birth

gestational age greater than 36 weeks and having no known genetic malformations [19]. We only
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considered records with at least 3 hours of recording.

We labelled each recording by outcome according to its arterial umbilical-cord base deficit and neonatal

indications of neurological impairment. An elevated base deficit measurement is an important indicator of

metabolic acidosis large enough to cause neurological injury [5], [20], [21]. The majority of the recordings

were from normal fetuses (221 cases: base deficit < 8 mmol/L); the rest were severely pathological (43

cases: base deficit ≥ 12 mmol/L, death or evidence of hypoxic ischemic encephalopathy). This proportion

of pathological cases was much higher than their natural incidence [2]–[4].

Data collection was performed by clinicians using standard clinical fetal monitors to acquire the CTG.

The monitors reported at uniform sampling rates of 4 Hz for FHR (measured in beats per minute (bpm))

and 1 Hz for UP (measured in mmHg), which we up-sampled to 4 Hz by zero-insertion and low-pass

filtering. In the majority of cases, the UP or FHR sensors were attached to the maternal abdomen; the

FHR was acquired from an ultrasound probe and the UP was acquired by tocography. In a few exceptional

cases, they were acquired internally via an intra-uterine (IU) probe and/or a fetal scalp electrode. UP

acquired by an IU probe is considered the gold-standard measurement. Tocography, on the other hand,

is not precisely calibrated; its amplitude depends on the pressure sensor contact and abdominal tissue

thickness [22]. Additionally, tocography underestimates the duration of contractions [23]. As a result,

the uterine contraction onset in the UP signal is delayed with respect to that acquired by an IU probe.

Jezewski et. al. [24] compared tocography to uterine electromyography, a measure that is consistent

temporally with the IU measurement; they found that in a set of 108 recordings taken within 24 hours

of labour, the contraction onset, when measured by tocography, occurred later (mean, standard deviation

and maximum values of 14 , 18 , and 80 s, respectively).

B. Overall processing

We modelled UP-FHR system dynamics by linear system identification. The processing steps are shown

schematically in Fig. 2. A preprocessing step cleaned and segmented the UP and FHR into 20-min epochs

of input and output data (U and f). Next, non-parametric system-identification (SI) methods were used

to estimate the IRF (ĥ) and the best values for the IRF delay d and memory M. Finally, the models were

validated using a model significance filter. Each step is detailed below.
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Fig. 2. Data processing for estimation of UP-FHR dynamics. Preprocessing cleans and segments the UP and FHR into 20-min

epochs of input U and output f. Non-parametric system identification (SI) estimates the impulse response function ĥ, delay d,

and memory M. The significance filter validates the resulting models.

C. Preprocessing

Because it is recorded in a clinical setting, CTG is subject to specific types of noise. The loss of

sensor contact can temporarily interrupt the UP or FHR signals, and interference from the (much lower)

maternal heart rate can corrupt the FHR. Interruptions appear in the signal as a sharp drop to much lower

amplitude followed by a sharp signal restoration. A simple threshold detector for such segments would

be prone to oscillate for noisy signals near the threshold; to avoid this, we used a Schmitt trigger, which

defines separate detection thresholds for down-going and up-going transitions. We chose thresholds of

max(µ − αiσ, 0) where µ and σ are the mean and standard deviation, respectively, over the entire signal

; we used α1 = 2, α2 = 1 for the down-going and up-going transitions, respectively. Some UP dropout

durations were underestimated by the Schmitt trigger; therefore, we extended dropout segments forward

and/or backwards in time if their overall standard deviation remained below a threshold (1 mmHg). We

also removed segments that had passed the Schmitt trigger but had negligible slope over a period of

more than 15 s. We merged sequential dropout segments in close proximity (≤4 samples). We bridged

dropouts lasting less than 15 s by linear interpolation; we removed longer dropouts from consideration. We

chose all thresholds empirically to obtain a qualitatively acceptable segmentation of signal and artifact.

More objective segmentation methods were outside the scope of this study, but are an area of active

research [25], [26].

Besides UP, FHR is influenced by a number of other physiological factors that are unobserved and

intrinsic to the fetus (reflected in FHR baseline and central-nervous-system-regulated variability); we did

not consider these factors in our input-output model. Also, the UP baseline can fluctuate considerably
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depending on the sensor contact. To reduce the impact of these factors, we applied a high-pass filter

to remove the baseline, and a low-pass filter to reduce the variability. We detrended the signals by

a high-pass filter selected to pass a long contraction or deceleration without incurring excessive filter

delay. We chose a filter with a cutoff frequency of 1
220s = 4.5 × 10−3 Hz as a compromise between these

competing demands. We selected the parameters for low-pass filtering based on two considerations. First,

the narrow-band UP energy (i.e., near the contraction rate and � 4 Hz) determines the bandwidth of the

UP-FHR linear interaction. However, we also wanted to retain sufficient time resolution for the delay

and memory estimation step (i.e., on the order of seconds). For these reasons, we decimated the signals

by an anti-aliasing filter and sub-sampling to 0.5 Hz .

Model quality generally increases with data length. However, we expected UP-FHR dynamics to be

non-stationary since the state of the fetus tends to degrade with time. To resolve this trade off, we extracted

20-min epochs with 10-min overlap between successive epochs; this epoch length is much longer than

the typical FHR deceleration response to a contraction (i.e., 1-2 min). We extracted as many such epochs

as possible starting from the beginning of a clean (artifact-free) segment; to include any remaining data

at the end of the segment (i.e., <10 min), the overlap was increased for the last epoch. We estimated

models for each epoch.

D. Non-parametric model

We denote the input UP, and output FHR, at time sample n (n = 1 . . .N), by un and fn, respectively.

We modelled the response, fn, to input un as the convolution sum:

fn ≈
M−1∑

i=0

(hi∆t)un−d−i = h ∗ un (1)

where ∆t is the sampling period, and h is the impulse response function (IRF) beginning at sample d

(called the delay), and of length M (called the memory). We denote by un the length-M vector of input

samples [un−d−M+1, . . . , un−d−1, un−d] used to estimate fn at sample n. For causal (physically realizable)

systems, d ≥ 0, but in the presence of an input measurement delay (as in our case), d may be negative [27].

Let U be an N × M Toeplitz matrix formed from un. The least-squares estimate of h is given by:

ĥ = (UT U)−1UT f ≈ Φ−1
uuφu f (2)

where, for N � M, UT U and UT f are estimated by the input autocorrelation matrix Φuu and the input-

output cross-correlation φu f , respectively [27]. Generally, increasing N improves the correlation estimates

and hence improves ĥ.
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The residual signal e = f −Uĥ was used to generate a figure of merit for the estimated model, in terms

of the percent variance accounted for ( %VAF):

%VAF = 100 ×
1 −

σ2
e

σ2
f

 (3)

where σ2
e and σ2

f are the variances of the residual and observed signals, respectively; lower residual

energy corresponds to higher VAFs and better models. VAF calculations excluded the initial M output

samples to avoid filter end effects.

Using VAF to compare normal and pathological models might be misleading since difference in FHR

variability might confound the ability of VAF to assess model quality. Therefore, we also calculated

model VAF after low-pass filtering the pre-processed FHR. We chose the very-low frequency band below

0.03 Hz (VLF, c.f. [28]) since that frequency band contained practically all (99.97%) of the average

spectral power of the models; at 0.03 Hz this power had dropped by 35dB, compared to the peak power.

We refer to this VAF measure as VAFVLF.

E. Pseudo-inverse for noise reduction

The input un was not controlled and was usually a narrow-band signal dominated by the contraction

frequency. On the other hand, the FHR was typically rich in frequency content. In performing linear

system identification with such an input, frequencies far from the contraction frequency will be hard to

identify. In other words, the least-squares problem of (2) may be ill-conditioned; spurious input-output

correlations may result in noisy IRF estimates. In this respect it should be noted that FHR variability

at frequencies greater than 0.03 Hz will act as noise for the identification procedure since there is no

power in the UP signal above this frequency (i.e., FHR variability is either unrelated or non-linearly

related to UP). These higher frequency components of FHR are known to contain information that is

potentially discriminating [29], [30], which indicates that they may be complementary to our model. In

order to reduce the noise for the linear model, we used SVD and retained only the most significant IRF

components, as described in [31] and summarized below.

The noise characteristics of the IRF estimate can be analyzed by examining (UT U)−1 and UT f in (2)

separately [32]. First, the Hessian G = UT U is Hermitian and positive definite, so its SVD is equivalent

to calculating its eigenvectors and eigenvalues as G = VSVT , where V contains a set of orthonormal

vectors and S is a diagonal matrix. Secondly, UT f can be rewritten as

UT f = UT Uh + UT e (4)
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Let ρ = VT h and η = VT (UT e) be the projections of the IRF h and the estimated input-noise cross-

correlation UT e, respectively, onto the Hessian eigenvectors V. With these transformations, (2) can be

rewritten as:

ĥ = VS−1VT (VSρ + Vη)

=

M−1∑

i=0

(ρi +
ηi

si
)vi

,
M−1∑

i=0

ĥi (5)

Thus, the SVD of G leads to a corresponding decomposition of ĥ. Eq. (5) shows that for small eigenvalues

si, the associated noise terms ηi will be amplified and corrupt the model term ρi when projected onto the

i-th eigenvector vi [32]. Limiting the summation to the most significant eigenvalues should improve the

signal-to-noise ratio of the estimate ĥ. Note that computing the pseudo-inverse of G in this way follows the

same decomposition procedure as applying principal components analysis (PCA) or the Karhonen-Loève

Transformation (KLT) to the input matrix U.

F. Order estimation

We used the minimum description length (MDL) criterion [33] to choose the number of terms in (5)

to retain, given by

MDL(m) =

[
1 +

mP log(N)
N

] N∑

i=1

[
fi − f̂i(m)

]2
(6)

where m is the number of singular values retained, f̂i(m) is the output estimate at the ith time step with m

singular values retained, and P is a penalty factor, usually set to 1. In [32] it is shown that the summation

in (6) can be efficiently calculated as σ2
f −

∑m
i=1 si

(
vi

T ĥ
)2

.

We analyzed the effect of the penalty P on the number of terms in (6). Our goal was two-fold: first, to

maximize IRF quality, as measured by the output VAF; second, to minimize IRF variability, as measured

by the sum of the IRF coefficient absolute differences

TV =

M∑

i=0

∣∣∣hi − hi−1
∣∣∣. (7)

where h−1 and hM are defined to be zero. This measure is called total variation [34] and can be interpreted

as the total amplitude of IRF oscillations.

To resolve the tradeoff between these measures, we compared the average VAF and average TV over

all epochs for different values of P. From these results and empirical analysis of individual cases, we
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chose P=4 for our subsequent modelling. Compared to the results with P=1, P=4 reduced average TV by

70.7 % (with a corresponding reduction in TV variance), while only reducing average VAF from 35.9 %

to 31.5 % (a relative reduction of 12.3 %). The VAF continued to decrease with higher values of P, with

little improvement in the TV.

Fig. 3a shows the effect of changing P on the shape of the IRF for an example epoch from a pathological

case. With the default MDL penalty factor P = 1, the IRF included all six components; with P = 4, only

the first two components were included. Fig. 3b shows that the final four components ĥ3,4,5,6 contributed

little to the output VAF (i.e., they were effectively noise); the two-component IRF had very similar VAF

(59.1 % vs. 62.9 %), but the TV was substantially reduced (i.e., from 98 % to 22 % of its maximum

value).

G. Delay and memory estimation

We initially assumed system causality and estimated the IRFs with no delay (i.e., d=0 in (1)) [35].

However, the input measurement delay associated with the UP sensor may result in a negative IRF delay.

In contrast, we expect the physiological response to have a positive delay. The combination of these

two delays can produce an FHR response that occurs before or after the measured UP contraction onset

(i.e., d could be negative or positive). We found that better estimates of d led to better model prediction;

therefore, we developed an algorithm to estimate d for each epoch. Based on [24], we set the lower

bound to dmin = -80 s. We observed that for some pathological cases, the FHR response occurred as late

as 80 s after the UP response, so we set dmax to this value.

The IRF length M should be long enough for the IRF to decay to 0, but as short as possible to

improve the conditioning associated with estimating IRFs, given the short duration of the epochs (20 min).

Furthermore, UP periodicity introduced artifactual IRF periodicity if M was too long. To handle this

problem, we performed a search over values of M as well.

The objective of the IRF delay and memory estimation was to identify the temporal extent of the IRF;

this meant searching for IRFs that 1) started and ended close to zero amplitude, 2) were as short as

possible, and 3) were most predictive of the output. This was not always straightforward because of the

IRF periodicity mentioned above. Therefore, we identified candidate intervals that satisfied goal (1), and

then chose a best interval using the MDL criterion, which implicitly satisfied goals (2) and (3).

Occasionally, when competing candidates had similar MDL values, the automatically selected delay

and/or memory estimates were not consistent with those of neighbouring epochs. Therefore, we performed

a post-processing step to choose the most plausible candidate. First, we median filtered (independently)
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Fig. 3. Order selection for an example epoch of a pathological case. (a) IRF principal components ĥi (dashed) and cumulative

sum
∑

ĥi (solid) for orders i ≤6 are shown. The vertical scales on the IRF plots are identical (zero amplitude is shown as a dotted

horizontal line) and the time units are seconds. With default MDL penalty factor P = 1, the IRF included all six components;

with selected P = 4, only the first two components were included. (b) VAF (black circles) and %TV (red triangles) at each

order. Compared to the six-component IRF (VAF=62.9%, TV=98% of its maximum value), the two-component IRF had very

similar VAF (∼ 59.1 %, indicated by the blue star), but the total variance was reduced to 22% of its maximum value.

the initial selections of delay {di} and recovery {ri} = {di + Mi} over all epochs i as {d̂i} and {r̂i}. The

median filtering included up to a total of 7 neighbouring samples in the median calculation at each sample

and no fewer than 4 samples (at the end points). Then, at each epoch i, we chose the candidate model

that was the nearest neighbour to (d̂i, r̂i, MDLi), where MDLi was the MDL of the initial candidate

at epoch i; a Euclidean distance metric was used, with each dimension normalized to units of standard

deviation about the mean, to give the three dimensions approximately equal weight. In this way, the

refined candidates had IRF start and end time values that were more consistent with their neighbouring

epochs. Additionally, their quality remained similar to the initial candidate.
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As a further refinement, we performed a local search for IRFs with minimal starting and ending

amplitudes, by varying the d and r found in the previous step by ±10 s. Then, from a final median

filtering of d, we removed delays outside the 95th percentile of the deviation about the median-filtered

value at each epoch (considering only epochs with models that had passed the significance filter, described

below). We selected both the median filter order and the refinement neighbourhood empirically.

To achieve goal (1), we defined ‘close’ to zero amplitude as <25 % of the maximum IRF amplitude.

Therefore we removed models where the first and last IRF lags, h0 and hM−1, did not satisfy this

criterion (i.e., remove if
∣∣∣ hi
hmax

∣∣∣ ≥ 0.25, i ∈ {0,M − 1}, where hmax is the IRF maximum amplitude).

We considered that delay-memory estimation had not been successful for these models; furthermore,

their VAFs were generally very low (the mean, standard deviation, and median values were 11.0, 11.3,

and 6.2 %, respectively).

Finally, we removed models having insignificant steady-state gain G < 10−5 (which indicated that

UP-FHR dynamics were virtually absent); the VAFs of these models were also generally very low (the

mean, standard deviation, and median values were 8.7, 11.2, and 4.6 %, respectively). We calculated

steady-state gain (henceforth referred to as gain) as the sum of the IRF coefficients

G =

M−1∑

i=0

hi (8)

H. Determining model significance using surrogates

Because the model output VAF was often quite low, we wanted to be confident that the IRFs modelled

system dynamics rather than noise [36]. To do so, we compared IRFs estimated from the preprocessed

FHR and from multiple FHR surrogates; the latter had similar properties to the former, except that their

relationship to UP had been destroyed. We generated these surrogates using the amplitude adjusted Fourier

transform (AAFT) [37], an algorithm that approximately preserves the power spectrum while maintaining

the amplitude probability distribution of the original FHR. However, the process randomizes the phase

so any relation to the UP will be removed.

The null hypothesis was that there were no UP-FHR linear dynamics in the epoch. This was rejected

when the quality of the model obtained with the original FHR was superior, statistically, to models

computed using surrogate FHR. In particular, the model was deemed significant if the VAF with the

original FHR was in the 95th percentile of VAFs computed with the original and surrogate FHRs. This is

justified in [37], [38]. To limit computational requirements, we generated Q=99 surrogates, and chose

the parameters of the test to obtain a significance threshold of 95 %.
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Fig. 4 shows the model significance validation rates for normal (Fig. 4a) and pathological (Fig.

4b) cases. The bars for VAF range 0-100 (at right) shows that overall validation rates were higher for

pathological cases (66.8 %) than for the normal cases (54.0 %), mainly because pathological cases tended

to have higher VAFs. This is seen in the bars to the left that have more precise VAF ranges. In particular,

pathological cases had a smaller proportion (82/346=23.7 %) of very low VAF (<10 %) compared to

the normal cases (917/2322 = 39.4 %); these models tended to be rejected for both classes. Acceptance

rates increased for higher ranges of VAF. For the pathological cases, acceptance was 4.9 % for models

with VAF<10 %, 63.4 % for 10 %≤VAF<20 %, 88.4 % for 20 %≤VAF<40 %, and 100 % for models with

VAF≥40 %. These proportions were similar for the normal cases.

For comparison, to achieve an overall validation acceptance rate equivalent to that obtained with

surrogates (55.7 %), a hard threshold of approximately VAF=13 % would have been required. Although

our approach also tends to reject low VAF models and accept high VAF models, it does so more adaptively.

We note that retaining the FHR variability component (i.e., FHR power ≥ 0.03 Hz) in the VAF calculation

did not affect the relative rates of acceptance across classes. The level of agreement between significance

tests that used VAF and those that used VAFVLF was 94.9% for normal cases and 95.9% for pathological

cases.

III. Results

A. Processing summary

The proportion of epochs eliminated at each processing step is shown in Table I. A significant portion

of the data failed to meet minimum criteria for modelling and were discarded. Preprocessing rejected

all epochs for 2/221 normal cases and 5/43 pathological cases. Subsequent processing (i.e., removal of

models that had low gain, or that failed delay-memory estimation, or that did not pass the significance

test using surrogate data) removed all epochs for a further 7 pathological and 20 normal cases. We

therefore retained for analysis 189 normal cases with 1195 epochs (out of a possible 3978 epochs, or

30 % of the data) and 31 pathological cases with 219 epochs (out of 774 epochs, or 28 % of the data).

The pathological data were significantly noisier than the normal data: a much larger portion of the former

was rejected as artifactual during preprocessing (42 % vs. 8 % for the normals). On the other hand, of

the data that passed the preprocessing step, a larger proportion of the pathological cases had models that

passed validation (28/(100-42) = 48 %) than for the normals (30/(100-8) = 33 %).
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Fig. 4. Acceptance rates of significance validation for a) normal and (b) pathological cases. For each VAF range, the number

of models validated (height of black bars) out of the total tested (combined height of black and white bars) is shown and the

percentage of validated models is indicated.

Normal Pathological

# Epochs (100%) 3978 774

Artifact 8% 42%

Low G 13% 4%

d/M estimation failed 21% 9%

Insignificant 27% 15%

Outlier d 2% 2%

Validated 30% 28%

TABLE I

Relative proportion of epochs eliminated at each processing step and final proportion of validated epochs for normal and

pathological cases. ‘# Epochs’ is the number of epochs possible in three hours of data, corresponding to 100%. The processing

steps removed: (1) artifact during preprocessing; (2) low gain models; (3) models with non-zero IRF at end lags during

delay/memory estimation; (4) insignificant models; (5) models with outlier delay values.
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B. IRFs of typical epochs

Fig. 5 shows the raw and preprocessed input UP, the raw, preprocessed and predicted output FHR,

the residual e, and estimated IRF for a typical normal epoch. The model parameters were VAF=44.7 %,

delay d=-16 s and gain G=-0.17 bpm/mmHg. This epoch illustrates some of the challenges to successful

modelling of the data. First, the background FHR variability was significant relative to the deceleration

amplitude. Secondly, our artifact detection procedure bridged an FHR dropout at 1100 s, introducing some

high-frequency artifact. Despite these factors, the predicted FHR shows that the model captured the FHR

response to UP.

Fig. 6 shows the same signals for a typical pathological epoch. In this case, two FHR dropout artifacts

were bridged (at 350 s and 950 s). Model parameters for the pathological case were markedly different

from those of the normal case; there was larger VAF (69.6 %), longer delay (d=34 s) and larger gain

(G=-0.50 bpm/mmHg) for the pathological case.

The output predictions of Figs. 5b and 6b (in red) were very smooth, suggesting that most prediction

occurred in the lower frequency band. A frequency analysis of the same epochs confirmed this. Figs. 7

and 8 show the input UP power spectrum S uu, and the preprocessed and predicted output FHR power

spectra S f f and S f̂ f̂ . In both the normal and pathological case, most of the input and output energies

were in the lower frequency band (i.e., near the UP contraction rate and far below the half-sampling

rate of 0.25 Hz). This was the dominant frequency band of the dynamics and the model accounted for

most of the energy here: the preprocessed and predicted FHR power spectra S f f and S f̂ f̂ are similar

over the main spectral peak (i.e., below ∼0.01Hz). The figure also shows that most of the model power

was contained in the VLF band below 0.03 Hz; at this frequency the response was attenuated by ∼ 40

dB with respect to the peak power. It is also apparent that the higher-frequency FHR energy (>0.03 Hz)

falls off at later frequencies for the normal compared to the pathological case, indicating that it contained

relatively more FHR variability.

C. IRF time progression of typical cases

Fig. 9a shows the progression of the IRFs for a normal case over time. This case showed marked

gain and VAF progression with time: it started at low gain and VAF values (G = −0.136 bpm/mmHg,

VAF=13.7 %) and steadily increased to its largest values (G = −0.810 bpm/mmHg, VAF=58.6 %) just

before delivery. The delay varied between -20 s and -4 s.

Fig. 9b shows the same time progression for a pathological case. Overall, the pathological case had

larger VAF, longer delay and larger gain. The gain was lowest for the initial epochs (G = −0.172 bpm/mmHg,
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Fig. 5. Modelling results for an example epoch of a normal case. (a) raw input UP (b) pre-processed UP (c) raw output FHR

(d) preprocessed (black) and predicted (red) output FHR (e) residual FHR (f) final IRF. Vertical blue bars indicate memory

length M=76 s (VAF=44.7 %, d = −16 s and G = −0.17 bpm/mmHg).
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Fig. 6. Modelling results for an example epoch of a pathological case. (a) raw input UP (b) pre-processed UP (c) raw output

FHR (d) preprocessed (black) and predicted (red) output FHR (e) residual FHR (f) final IRF. Vertical blue bars indicate memory

length M=126 s (VAF=69.6 %, d = 34 s and G = −0.50 bpm/mmHg).
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Fig. 7. Frequency analysis for an example epoch for a normal case. (a) input UP spectrum S uu (b) preprocessed (black) and

predicted (red) output FHR spectra S f f and S f̂ f̂ .

VAF=37.6 %), followed by a larger and relatively stable gain and VAF (G = −0.616 bpm/mmHg, VAF=54.9 %)

at epoch -10 until delivery. The delay was longer and steady for the pathological case (∼16 s). These results

are consistent with the clinical expectation that pathological cases have later and stronger responses.

D. IRF parameters by class

Fig. 10 shows the time progression, by epoch, of the average model parameters. There were 6 epochs

per hour. For the normal cases, the delay was relatively steady over time. G and VAF, however, tended to

increase over time, especially in the last hour (i.e., the last 6 epochs). Overall, the pathological cases had

longer delay d, larger (negative) gain G and higher VAF. For the pathological cases, the delay increased

substantially in the final hour; G and VAF increased from the first to second hour and then dropped in

the final hour, likely reflecting the influence of greater sensor disturbance near delivery on the smaller

pathological population.

To assess whether the class parameter differences were statistically significant, we performed hypothesis

tests at each epoch. We compared class distributions with the Kolmogorov-Smirnov (KS) hypothesis test,

which uses the maximum difference of the empirical cumulative distribution functions (cdfs) as a test

statistic. More precisely, denoting by FN and FP the cdfs of the normal and pathological populations,
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Fig. 8. Frequency analysis for an example epoch for a pathological case. (a) input UP spectrum S uu (b) preprocessed (black)

and predicted (red) output FHR spectra S f f and S f̂ f̂ .

respectively, the KS test computes max(|FN(x) − FP(x)|) for all values of the model parameter x. We

deemed a class difference significant if the test rejected the null hypothesis at the p < 0.05 level (shown

in the figure by blue asterisks). The delay difference was consistently significant over the epochs of the

final hour. The VAF and gain were significant for most epochs between the end of hour -3 and hour -2.

Memory M did not pass the hypothesis tests for significant class differences. We noted that the K-S test

was more conservative than simpler mean-based tests such as the t-test, which tended to reject the null

hypothesis more often for the VAF, delay and gain parameters.

Using the modified VAFVLF calculation increased the VAF of the normal case of Fig. 5 from 44.7%

to 54.2% and the pathological case of Fig. 6 from 69.6% to 74.5%. The time progression of the class-

average VAFVLF of Fig. 10(b) had a mean trend and variance that was very similar to the original VAF

of Fig. 10(a), except that both the normal and pathological trends were shifted towards higher VAF.

There was also a slight increase (from 5 to 8) in the number of epochs that had statistically significant

differences. These results confirm that the across-class differences we observed in model quality were

due mainly to system dynamics rather than FHR variability.
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(a)

(b)

Fig. 9. IRF progression over epochs for (a) normal and (b) pathological cases. The perpendicular lines indicate IRF lag t=0

and the time of delivery (epoch 0, marked with triangles). The IRF amplitudes have the same scale with the mesh colour ranging

from blue (no response) to red (strong response) . Overall, the pathological case had longer delay and larger gain. The normal

case steadily progressed in time towards its largest gain just before delivery, while the pathological case had lower gain in the

first few epochs, but soon increased to a larger gain that remained almost constant until delivery.
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Fig. 10. Time progression of model parameters in the last three hours of labour and delivery. The mean and standard error

for (a) VAF, (b) VAFVLF (c) gain G, (d) delay d and (e) memory M are plotted by epoch for normal (black triangles) and

pathological (red squares) cases. For each parameter, epochs where hypothesis tests indicated significant differences between

classes (p < 0.05) are displayed by asterisks (*).
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IV. Discussion

A. Technical approach

Our system identification approach is an entirely automated method that extracts information from the

two CTG signals in a novel way. The IRF implicitly captures the strength and timing of the FHR response

to UP, in contrast to a feature detection approach where these relations must be measured explicitly (e.g.,

in terms of amplitude ratios and time delays) from noisy signals. To our knowledge, this is the first

successful attempt to model UP-FHR dynamics.

The particularities of the (uncontrolled) UP input signal required special treatment to regularize the

ill-posed identification problem. We used SVD decomposition to suppress noise as is customary, but

instead of using the standard MDL formulation, which tended to generate overly complex IRFs, we used

a modified MDL to choose a more appropriate order. The narrow-band UP introduced periodicity in

the estimated IRF; this and the unknown UP sensor measurement delay introduced ambiguity about the

temporal extent of the IRF response. We solved this by developing a method of estimating the IRF delay

and memory.

Modelling such data required extensive validation; the final surrogate testing provided an objective,

adaptive assessment of model quality. When our modelling was successful, our techniques generated

models that were reliable; they were clean (as evidenced by the reduction in model total variation by

the modified MDL criterion for order selection), concise (via the MDL criterion for delay and memory

estimation), and predictive (as evidenced by the VAF). Moreover, these models were consistent with

clinical expectation, as we discuss in the next section.

B. Scientific and clinical significance

We have shown that our modelling revealed UP-FHR system dynamics that correspond well to the

clinical understanding of the UP-FHR interaction. Fetuses in distress tend to have stronger and later FHR

responses to UP, described in clinical terms as deeper and later decelerations. Healthy fetuses, on the

other hand, tend to respond less overall, and with strong responses only for a short period just prior to

delivery. Indeed, our results showed significant differences across outcome classes in the IRF parameters

corresponding to response strength and timing (the IRF gain and delay), despite these parameters being

subject to the measurement problems of UP tocography.

The differences in delay also align with clinical expectation. Sensor-related delays would be expected

to affect both outcome classes equally; hence, in general, the longer delays in pathological cases were
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dominated by delays that were physiological in nature. This result is also consistent with animal studies,

which have shown that under conditions of mild hypoxia, relatively rapid parasympathetic chemo-

receptor mechanisms dominate the fetal response to contractions. However, with increasing hypoxia,

slower parasympathetic baro-receptor and direct myocardial depression play an increasing role in the

deceleration response [39], [40]. Consequently, the latency of the fetal response is expected to increase

with hypoxia.

Our finding that models of pathological cases tend to have higher VAF is also consistent with clinical

expectation. In a healthy fetus, contractions cause little disruption in oxygen delivery and little need for

compensatory FHR changes; a fetus in distress, however, will tend to be less resistent to the insults of

labour, especially the highly compressive contraction events. Their compensatory mechanisms may be

quite compromised, causing them to follow rather than resist the onslaught of the stimulus. As a result,

their response is a more predictable phenomenon that can be modelled more precisely.

Clinical UP and FHR are very noisy signals prone to frequent sensor disturbance; to our knowledge,

CTG signals collected under these conditions have never been subject to the analysis of an approach

such as ours. The pathological cases were especially prone to artifact, suggesting that these cases were

more likely subject to sensor disturbance and clinical intervention. Despite these conditions, our modelling

successfully generated valid models for around a third of the data (including artifactual data). Furthermore,

the proportion of artifact-free epochs resulting in models was higher for pathological cases (one-half)

compared to the normal cases (one-third). We think that this success rate is very acceptable: normal

cases often exhibit significant FHR response to UP only very late in labour (i.e., there is often a weak

or non-existent UP/FHR model). Consequently, it is to be expected that no model would be found for

many epochs where there is no response; these should not raise an alarm because they are consistent

with the behaviour of healthy fetuses. Pathological cases tend to have an FHR response to UP that is

more significant and occurring earlier in labour, but they may also have no response due to severe loss

of compensatory mechanisms (which may be indicative of chronic rather than acute injury). Therefore,

even if the data were artifact-free, we would not expect to generate models for every epoch.

C. Classification

Our results suggest that the model parameters could be used successfully to automatically classify

the fetal state. Indeed, in other studies, we have successfully used our model, in conjunction with

measures of FHR variability and baseline, for classification purposes. Using the system identification

model alone for epochs near delivery, we reported a false positive rate of 10% (i.e., a specificity of 90 %)
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with a sensitivity of ∼75% (i.e., a false negative rate of 25%) [17]. This classification considered epochs

in isolation; for a more robust classifier, we also considered the history of epoch classifications [18].

With this approach, we observed a mean area under the receiver-operator characteristic (ROC) of 0.801.

This ROC was generated by varying the number of single epoch pathological classifications required

to generate an overall pathological classification (i.e. varying from one to six epochs). For comparison,

we also generated similar classifiers that used measures of FHR baseline and variability as features.

These features were generated by linear fitting for the baseline and an autoregressive (AR) model for

the variability. A study of individual pathological cases indicated that some fetuses were classified by

one or the other, but not both of the classifiers. Of the 31 pathological cases tested (selected to have at

least three system identification models), 5 were correctly classified by the system identification model

classifier alone, 4 were correctly classified by the baseline-variability classifier alone, 18 were correctly

classified by both and 4 were missed by both. These results clearly demonstrate the potential clinical

significance of our models as well as the complementarity of the system identification model and measures

of FHR variability and baseline.

D. Future work

We expect that better UP measurement techniques, such as uterine electromyography [41], would

improve discrimination of the two classes further. Indeed, further insights could be obtained by applying

our approach to data collected with an improved acquisition protocol.

The generally low VAFs can be attributed to that fact that UP is not the only influence on FHR.

Background intrinsic FHR variability unrelated to UP can be of significant amplitude [42]. Also, our

linear model assumes stationarity within epochs (which can be violated) and does not account for non-

linear interactions such as 1) the higher-frequency harmonics present in some very sharp decelerations

and 2) variability that is coincident with decelerations [43]. We are also aware that certain severely

injured fetuses may display FHR with abnormal variability or levels of baseline [29], [30]. We view our

very-low-frequency system identification model as complementary to measures of FHR variability and

baseline for assessment of the fetal state.

We also hope to classify intermediate cases, which may develop hypoxia quite late in delivery. A survey

of clinical FHR studies [5] concluded that fetal acidemia usually develops over one hour. Given fetal-

state evolution over this time frame, there is great potential for the combination of better data collection

and model-based analysis to improve current clinical practice by identifying fetuses at risk before they

become injured.

63



www.manaraa.com

References

[1] P. A. Warrick, E. F. Hamilton, D. Precup, and R. E. Kearney, “Identification of the dynamic relationship between intra-

partum uterine pressure and fetal heart rate for normal and hypoxic fetuses,” Biomedical Engineering, IEEE Transactions

on, vol. 56, no. 6, pp. 1587–1597, June 2009.

[2] ACOG, Neonatal Encephalopathy and Cerebral Palsy: Defining the Pathogenesis and Pathophysiology. ACOG Task force

on Neonatal Encephalopathy and Cerebral Palsy, January 2003.

[3] N. Badawi, J. Kurinczuk, J. Keogh, L. Alessandri, F. O’Sullivan, P. Burton, P. Pemberton, and F. Stanley, “Antepartum

risk factors for newborn encephalopathy: the Western Australian case-control study,” BMJ, vol. 317, pp. 1549–1553, 1998.

[4] E. Draper, J. Kurinczuk, C. Lamming, M. Clarke, D. James, and D. Field, “A confidential enquiry into cases of neonatal

encephalopathy,” Arch Dis Child Fetal Neonatal Ed, vol. 87, pp. F176–F180, 2002.

[5] J. T. Parer, T. King, S. Flanders, M. Fox, and S. J. Kilpatrick, “Fetal acidemia and electronic fetal heart rate patterns:

Is there evidence of an association?” Journal of Maternal-Fetal & Neonatal Medicine, vol. 19, no. 5, pp. 289–294, May

2006.

[6] S. Ransom, D. Studdert, M. Dombrowski, J. Mello, and T. Brennan, “Reduced medicolegal risk by compliance with

obstetric clinical pathways: A case-control study,” Obstet Gynecol, vol. 101, 2003.

[7] C. Saphier, E. Thomas, D. S. D, T. Brennan, and D. Acker, “Applying no-fault compensation to obstetric malpractice

claims,” Prim Care Update Ob Gyns, vol. 5, pp. 208–9, 1998.

[8] B. Stalnaker, J. Maher, G. Kleinman, J. Macksey, L. Fishman, and J. Bernard, “Characteristics of successful claims for

payment by the Florida Neurologic Injury Compensation Association Fund,” Am J Obstet Gynecol, vol. 177, pp. 268–71,

1997.

[9] G. Berry and P. Martin, “Perinatal risks. risk management foundation harvard medical institutions forum,” Harvard

University, Tech. Rep., March 2001.

[10] K. Maeda, M. Utsu, A. Makio, M. Serizawa, Y. Noguchi, T. Hamada, K. Mariko, and F. Matsumoto, “Neural network

computer analysis of fetal heart rate,” Journal of Maternal-Fetal Investigation, vol. 8, no. 4, pp. 163–171, Dec. 1998.

[11] J. Skinner, J. Garibaldi, J. Curnow, and E. Ifeachor, “Intelligent fetal heart rate analysis,” in Advances in Medical Signal

and Information Processing, 2000. First International Conference on (IEE Conf. Publ. No. 476), 2000, pp. 14–21.

[12] F. Lunghi, G. Magenes, L. Pedrinazzi, and M. Signorini, “Detection of fetal distress though a support vector machine

based on fetal heart rate parameters,” in Computers in Cardiology, 2005, 2005, pp. 247–250.

[13] P. Warrick, E. Hamilton, and M. Macieszczak, “Neural network based detection of fetal heart rate patterns,” in Neural

Networks, 2005. Proceedings. 2005 IEEE International Joint Conference on, vol. 4, 2005, pp. 2400–2405.

[14] H. Cao, D. Lake, I. Ferguson, J.E., C. Chisholm, M. Griffin, and J. Moorman, “Toward quantitative fetal heart rate

monitoring,” Biomedical Engineering, IEEE Transactions on, vol. 53, no. 1, pp. 111–118, 2006.

[15] G. Georgoulas, D. Stylios, and P. Groumpos, “Predicting the risk of metabolic acidosis for newborns based on fetal heart

rate signal classification using support vector machines,” Biomedical Engineering, IEEE Transactions on, vol. 53, no. 5,

pp. 875–884, 2006.

[16] F. Cowan, M. Rutherford, F. Groenendaal, P. Eken, E. Mercuri, G. M. Bydder, L. C. Meiners, L. M. Dubowitz, and L. S.

de Vries, “Origin and timing of brain lesions in term infants with neonatal encephalopathy,” The Lancet, vol. 361, no.

9359, pp. 736–742, Mar. 2003.

[17] P. A. Warrick, E. F. Hamilton, R. E. Kearney, and D. Precup, “Classification of normal and hypoxic fetuses using

64



www.manaraa.com

system identification from intra-partum cardiotocography,” in ICML2008 Workshop on Machine Learning for Health Care

Applications, 2008.

[18] P. A. Warrick, E. F. Hamilton, D. Precup, and R. E. Kearney, “Classification of normal and hypoxic fetuses from systems

modelling of intra-partum cardiotocography,” Biomedical Engineering, IEEE Transactions on, 2009, to be submitted.

[19] E. Hamilton, A. Dyachenko, C. Elliott, P. Warrick, and A. Ciampi, “Progression of intrapartum EFM patterns in births

with symptomatic metabolic acidosis,” American Journal of Obstetrics and Gynecology, vol. 197, no. 6, p. s182, 2007.

[20] J. Low, R. Victory, and E. Derrick, “Predictive value of electronic fetal monitoring for intrapartum fetal asphyxia with

metabolic acidosis,” Obstet Gynecol, vol. 93, pp. 285–291, 1999.

[21] A. MacLennan, “A template for defining a causal relation between acute intrapartum events and cerebral palsy: international

consensus statement,” BMJ, vol. 319, no. 7216, pp. 1054–1059, 1999.

[22] T. Vanner and J. Gardosi, “Intrapartum assessment of uterine activity,” Bailliere’s Clinical Obstetrics And Gynaecology,

vol. 10, no. 2, pp. 243–257, June 1996.

[23] M. Miles, A.M., M. Monga, M., and M. Richeson, K.S., “Correlation of external and internal monitoring of uterine activity

in a cohort of term patients,” American Journal Of Perinatology, no. 03, pp. 137–140, 2001.

[24] J. Jezewski, K. Horoba, A. Matonia, and J. Wrobel, “Quantitative analysis of contraction patterns in electrical activity

signal of pregnant uterus as an alternative to mechanical approach,” Physiological Measurement, no. 5, p. 753, 2005.

[25] M. Davy and S. Godsill, “Detection of abrupt spectral changes using support vector machines an application to audio

signal segmentation,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, 2002.

[26] B. Aysin, L. Chaparro, I. Grave, and V. Shusterman, “Orthonormal-basis partitioning and time-frequency representation of

cardiac rhythm dynamics,” Biomedical Engineering, IEEE Transactions on, vol. 52, no. 5, pp. 878–889, 2005.

[27] I. W. Hunter and R. E. Kearney, “Two-sided linear filter identification,” Medical & Biological Engineering & Computing,

vol. 21, pp. 203–209, 1983.

[28] S. Cerutti, S. Civardi, A. Bianchi, M. Signorini, E. Ferrazzi, and G. Pardi, “Spectral analysis of antepartum heart rate

variability,” Clin. Phys. Physiol. Meas., vol. 10, pp. 27–31, 1989.

[29] International Federation of Gynecology and Obstetrics (FIGO), “Guidelines for the use of fetal monitoring,” Int J Gynaecol

Obstet, vol. 25, pp. 159–67, 1987.

[30] National Institute of Child Health and Human Development (NICHD), “Electronic fetal heart rate monitoring: research

guidelines for interpretation. national institute of child health and human development research planning workshop.” Am J

Obstet Gynecol., vol. 177, no. 6, pp. 1385–90, 1997.

[31] P. A. Warrick, R. E. Kearney, D. Precup, and E. F. Hamilton, “System-identification noise suppression for intra-partum

cardiotocography to discriminate normal and hypoxic fetuses,” in Computers in Cardiology 2006. Proceedings., vol. 33,

2006, pp. 937–940.

[32] D. T. Westwick and R. E. Kearney, Identification of nonlinear physiological systems. Hoboken NJ: Wiley-Interscience,

2003.

[33] J. Rissanen, “Modeling by shortest data description,” Automatica, vol. 14, pp. 465–471, 1978.

[34] S. Mallat, A wavelet tour of signal processing. San Diego, CA: Academic Press, 1999.

[35] P. A. Warrick, E. F. Hamilton, D. Precup, and R. E. Kearney, “Detecting the temporal extent of the impulse response

function from intra-partum cardiotocography for normal and hypoxic fetuses,” in The 2008 IEEE Engineering in Medicine

and Biology 30th Annual Conference, 2008, pp. 2797–2800.

[36] P. A. Warrick, R. E. Kearney, D. Precup, and E. F. Hamilton, “Time progression of a parametric impulse response function

65



www.manaraa.com

estimate from intra-partum cardiotocography for normal and hypoxic fetuses,” in Computers in Cardiology 2007, 2007,

pp. 693–696.

[37] J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, and J. Doyne Farmer, “Testing for nonlinearity in time series: the method

of surrogate data,” Physica D: Nonlinear Phenomena, vol. 58, no. 1-4, pp. 77–94, Sept. 1992.

[38] T. Schreiber and A. Schmitz, “Surrogate time series,” Physica D: Nonlinear Phenomena, vol. 142, no. 3-4, pp. 346–382,

Aug. 2000.

[39] C. B. Martin, J. de Haan, B. van der Wildt, H. W. Jongsma, A. Dieleman, and T. H. M. Arts, “Mechanisms of late

decelerations in the fetal heart rate : A study with autonomic blocking agents in fetal lambs,” European Journal of

Obstetrics & Gynecology and Reproductive Biology, vol. 9, no. 6, pp. 361–373, Dec. 1979.

[40] L. Bennet, J. A. Westgate, Y.-C. J. Liu, G. Wassink, and A. J. Gunn, “Fetal acidosis and hypotension during repeated

umbilical cord occlusions are associated with enhanced chemoreflex responses in near-term fetal sheep,” J Appl Physiol,

vol. 99, no. 4, pp. 1477–1482, 2005.

[41] M. Skowronski, J. Harris, D. Marossero, R. Edwards, and T. Euliano, “Prediction of intrauterine pressure from

electrohysterography using optimal linear filtering,” Biomedical Engineering, IEEE Transactions on, vol. 53, no. 10, pp.

1983–1989, 2006.

[42] J. Westgate, B. Wibbens, L. Bennet, G. Wassink, J. Parer, and A. Gunn, “The intrapartum deceleration in center stage:

a physiologic approach to the interpretation of fetal heart rate changes in labor.” American Journal of Obstetrics and

Gynecology, vol. 197, no. 3, pp. 236.e1 – 236.e11, 2007.

[43] M. Romano, P. Bifulco, M. Cesarelli, M. Sansone, and M. Bracale, “Foetal heart rate power spectrum response to uterine

contraction,” Medical and Biological Engineering and Computing, vol. 44, pp. 88–201, March 2006.

66



www.manaraa.com

CHAPTER 6
Journal article III: Fetal-state classification

Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kearney. Classifi-

cation of normal and hypoxic fetuses from systems modelling of intra-partum cardiotocog-

raphy. IEEE Transactions on Biomedical Engineering, October 2009. accepted

6.1 Introduction

This paper addresses the main goal of the thesis, that is, automated assessment of

the fetal state during labour and delivery. Using the system identification models of the

previous paper, we classified 20-min epochs as normal or pathological. At the same time,

we did similar classification using the complementary FHR information of baseline and

variability parameters. By combining these epoch classifiers and observing their history

over time, we constructed a detector of fetal pathology. The results indicate that half of

the pathological cases could be detected, with low false positive rates (7.5%), early enough,

(1.5 hours before delivery) to allow appropriate clinical intervention.
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Classification of Normal And Hypoxic Fetuses from

Systems Modelling of Intra-Partum Cardiotocography

Philip A. Warrick1, Emily F. Hamilton3,4, Doina Precup2 and Robert E. Kearney1

Abstract

Recording of maternal uterine pressure (UP) and fetal heart rate (FHR) during labour and delivery

is a procedure referred to as cardiotocography. We modelled this signal pair as an input-output system

using a system identification approach to estimate their dynamic relation in terms of an impulse response

function. We also modelled FHR baseline with a linear fit and FHR variability unrelated to UP using the

power spectral density computed from an auto-regressive model. Using a perinatal database of normal and

pathological cases, we trained support-vector-machine classifiers with feature sets from these models. We

used the classification in a detection process. We obtained the best results with a detector that combined

the decisions of classifiers using both feature sets. It detected half of the pathological cases, with very

few false positives (7.5%), one hour and forty minutes before delivery. This would leave sufficient time

for an appropriate clinical response. These results clearly demonstrate the utility of our method for the

early detection of cases needing clinical intervention.

I. Introduction

BETWEEN 1 and 7 in 1000 fetuses experience oxygen deprivation during labour that is severe

enough to cause fetal death or brain injury [1]–[3]. Currently, non-invasive methods to measure

directly the fetal acid-base status and cerebral oxygenation during labour and delivery do not exist, leaving

clinicians with only indirect measures of oxygen delivery and neurological function. A standard approach

is cardiotocography (CTG), which measures maternal uterine pressure (UP) and fetal heart rate (FHR).

The clinical relevance of some FHR signal characteristics is well understood. The average FHR level,

or baseline, reflects the cardiac output; a value within the range 120-160 beats per minute (bpm) indicates

Corresponding author: Philip Warrick (e-mail: philip.warrick@mcgill.ca). The authors acknowledge the financial support of

this work by LMS Medical Systems, Inc. and the Natural Sciences and Engineering Research Council of Canada (NSERC).
1Biomedical Engineering Department, McGill University, Montreal, Quebec, Canada. 2School of Computer Science, McGill

University, Montreal, Quebec, Canada. 3Department of Obstetrics and Gynecology, McGill University, Montreal Quebec,

Canada. 4LMS Medical Systems, Inc., Montreal, Quebec, Canada.
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that blood delivery is adequate. Small, random fluctuations around baseline (normally 5-15 bpm), known

as FHR variability (HRV), indicate that the central nervous system is intact and providing a healthy

modulating influence [1], [4].

Temporary decreases in FHR (from 15 s to several minutes in duration and > 15 bpm in amplitude)

are known as decelerations and reflect events such as compression of the umbilical cord by uterine

contractions, malfunction of the fetal heart muscle, or premature separation of the placenta. Generally,

larger insults are indicated by recurring episodes of deep, long decelerations whose onsets occur late with

respect to the uterine contractions. Temporary increases in FHR (> 15 s, > 15 bpm), called accelerations,

accompany fetal movement and are generally thought to indicate a healthy state.

Visual pattern recognition and inference are the basis of clinical interpretation, but are inconsistently

applied and have low specificity [5]. Significant hypoxia is rare while false alarms are common, so

physicians often disregard truly abnormal signals [3], [6]. Thus, there is great motivation to find better

methods that discriminate between healthy and hypoxic conditions.

In a previous paper [7], we described a new approach to FHR analysis that focuses on the dynamic

relationship between UP (as input) and FHR (as output). We used a non-parametric system-identification

approach to estimate system dynamics in terms of an impulse response function (IRF) that describes the

linear, dynamic relation between very-low-frequency FHR energy (i.e., < 30 mHz) and UP. This approach

provided robust parameter estimates from noisy CTG collected under clinical conditions.

In this paper, we evaluate the relative merits of parameters estimated from system identification,

baseline and HRV modelling for the early detection of pathological fetuses. HRV was characterized

quantitatively by using signal processing to subdivide it into distinct energy bands: low frequency (LF,

30-150 mHz), movement frequency (MF, 150-500 mHz) and high frequency (HF, 0.5-1.0 Hz) [8]. These

bands are associated physiologically with neural sympathetic and parasympathetic fetal activity (LF), fetal

movement (MF) and fetal breathing (HF) and their power spectral densities have been used in previous

research for the discrimination of fetal pathology [9], [10].

Using supervised learning, these parameters were used as inputs for classification of sliding window

data segments (or epochs) from normal and pathological cases. These classifications were used in a

detector of pathology. The results from this approach demonstrate that these are discriminating parameters

that enable the detection of pathological fetuses early in labour. From a clinical perspective, this capability

provides a useful new tool for assisting clinicians in their intra-partum decision-making.
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II. Methods

A. Data

We used a database of intrapartum CTG recordings for pregnancies having a birth gestational age

greater than 36 weeks and no known genetic malformations [11]. All data was provided in compliance

with institutional regulations.

Data collection was performed by clinicians using standard clinical fetal monitors to acquire the CTG.

The monitors reported at uniform sampling rates of 4 Hz for FHR (measured in beats per minute (bpm))

and 1 Hz for UP (measured in mmHg), which we up-sampled to 4 Hz by zero-insertion and low-pass

filtering. In the majority of cases, the UP or FHR sensors were attached to the maternal abdomen; the

FHR was acquired from an ultrasound probe and the UP was acquired by tocography. In a few cases,

they were acquired internally via an intra-uterine (IU) probe and/or a fetal-scalp electrode.

B. Overall model

CTG data comprises the UP signal, u and the FHR signal, f . Conceptually, we view FHR generation

as originating from three sources: 1) baseline heart rate (producing average cardiac output), 2) response

to maternal uterine contractions, and 3) variability due to sympathetic-parasympathetic modulation. Con-

sequently, we modelled f as the sum of three components, fBL + fS I + fHRV , as shown in Fig. 1. These

components represent the signal energy from three FHR frequency bands modelled as follows:

• the baseline signal fBL (0-4.5 mHz) modelling the lowest frequency FHR by a linear trend.

• the system identification signal fS I (4.5-30 mHz) modelling the fetal response to the maternal uterine

contractions as the convolution of the measured input UP u with an impulse response function.

• the variability signal fHRV (30mHz-1.0 Hz) modelling the highest frequency FHR as the output of

an auto-regressive model driven by some (unknown) Gaussian white input noise v.

The computation of these three estimates is elaborated below.

C. Preprocessing

The CTG data was recorded in a clinical setting, so it was subject to specific types of noise. The

loss of sensor contact can temporarily interrupt the UP or FHR signals, and interference from the (much

lower) maternal heart rate can corrupt the FHR. These both appeared in the signal as a sharp drop to

much lower amplitude followed by a sharp signal restoration. As described in [7], we preprocessed the

data to bridge interruptions lasting less than 15 s and remove segments containing longer interruptions.
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Fig. 1. Modelling FHR f . The FHR baseline fBL is modelled as a linear trend of the lowest frequency FHR. The fetal response

to uterine pressure fS I is modelled as the convolution of the measured uterine pressure u with an impulse response function.

The heart-rate variability fHRV is modelled as the response of an auto-regressive model to an (unknown) Gaussian white noise

source v.

In a stationary system, the quality of model estimates obtained by system identification can be expected

to increase with data length. However, the state of the fetus changes with time [5]. Thus, there is a trade-

off between selecting a record length that is long enough for successful system identification but short

enough to avoid significant non-stationarities. To resolve this, we extracted 20-min epochs with 10-min

overlap between successive epochs. This epoch length typically spanned several UP contraction-FHR

deceleration pairs. As many epochs as possible were extracted starting from the beginning of each clean

(artifact-free) segment; to include any remaining data at the end of the segment (i.e., < 10 min), the

overlap was increased for the last epoch to a maximum of 18 min.
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D. Baseline

The FHR was digitally low-pass filtered with a cut-off frequency of 4.5 mHz, to remove power due to

decelerations, and decimated to a sampling rate of 0.5 Hz. This filter and the HRV filter, described later,

were designed using the Parks and McClennan FIR algorithm [12] with a -70 dB stopband. We estimated

baseline by performing a linear fit of the filtered FHR, as illustrated in Fig. 3(a), and characterized by

the offset and slope.

E. System Identification

To detrend the FHR in preparation for system identification, the signal was filtered with the high-pass

filter complementary to the low-pass filter used to estimate the baseline and decimated to 0.5 Hz. The

same processing was applied to the UP. The IRF h was estimated from the resulting signals.

As described in [7], let the input, UP, and output, FHR, at time sample n (n = 1 . . .N) be denoted by

un and fn, respectively. The linear dynamic response fn to an arbitrary input signal un is given by the

convolution sum:

fn =

d+M−1∑

i=d

(hi∆t)un−i = h ∗ un (1)

where ∆t is the sampling period, and h is the IRF beginning at sample d, and of length M. d is

also called the delay and M is called the memory length. un is the length-M vector of input samples

[un−d−M+1 . . . un−d−1 un−d] used to compute fn at sample n. For causal (physically realizable) systems,

d ≥ 0, but in the presence of an input measurement delay, d may be negative [13]. The UP tocography

signal depends on the pressure-sensor contact and abdominal tissue thickness [14], which may result in

a measurement delay, so negative d is possible. In contrast, we expect the physiological response to have

a positive delay. The combination of these two delays can produce an FHR response that occurs before

or after the measured UP contraction onset (i.e., d could be negative or positive).

Several processing steps were used to obtain a good h estimate, as described in [15]. We first obtained

the least-squares estimate

ĥ = (UT U)−1UT f ≈ Φ−1
uuφu f (2)

where U is an N × M Toeplitz matrix formed from un, f is the length-N measured output, and for

N � M, UT U and UT f are estimated by the input autocorrelation matrix Φuu and the input-output cross-

correlation φu f , respectively [13]. We used a pseudo-inverse method to represent the IRF by its most

significant principal components, in order to suppress noise [7], [16].
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Fig. 2. System identification modelling results for an typical epoch of a pathological case. (a) raw input UP (b) pre-processed

UP (c) raw output FHR (d) preprocessed (black) and predicted (red) output FHR (e) final IRF. The IRF delay d was 20 s, the

gain G was -0.32 bpm/mmHg and the VAF of the model was 44.0.
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Fig. 3. Model estimates from an epoch of a typical pathological case for (a) the fetal heart-rate baseline FHRBL (black

line); this is a linear fit of the lowest frequency band of the FHR (0-4.5 mHz), shown in grey, (b) the HRV band signal; the

estimated HRV was virtually identical with a VAF=93.8%, and (c) HRV measured as the power spectral density PSDHRV over

the LF (30-150 mHz), MF (150-500 mHz) and HF (0.5-1.0 Hz) frequency bands. Note that we considered the lowest band, VLF

(0.0-30 mHz), in the system identification model; before estimating the HRV, we attenuated this band by a 30 mHz high-pass

filter.
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The input UP of the CTG data was narrow-band and the IRF memory was a significant proportion of

the epoch, leading to noisy IRF estimates. To ensure that our model captured true system dynamics rather

than a spurious input-output correlation due to noise, we also estimated a large number (99) of models

from surrogate FHR. Since the FHR spectrum was far from white, the surrogates were generated using

the amplitude-adjusted Fourier-transform method (AAFT) [17], [18], which approximates the original

spectrum but scrambles the phase. Models were generated for both original and surrogate data. Only

models of the original data that ranked in the top five in terms of variance accounted for (VAF) [19]

were retained. Under these conditions, there was only a 5% probability that a top ranking occurred by

coincidence, giving greater confidence that we retained valid models of system dynamics.

Fig. 2 shows the input and preprocessed UP and FHR, the IRF and the model-predicted FHR for an

epoch from a typical pathological case. For this example, the IRF delay d was 20 s. We also estimated

the steady state gain G =
∑M−1

i=0 hi, reflecting the magnitude of the response. For this example, G was

-0.32 bpm/mmHg. The VAF of this model was 44.0%.

F. Heart-rate variability (HRV)

The FHR was detrended by a high-pass filter with cutoff frequency 30 mHz, corresponding to the lower

limit of the LF band of fetal HRV [9], and decimated to 2.0 Hz to include the 1.0 Hz upper limit of the

HF band of fetal HRV.

As shown in Fig. 1, we model the fetal HRV fHRV as the output of an auto-regressive (AR) model given

some unknown Gaussian white input noise v. We estimated the AR coefficients using linear prediction

and chose the order p using the minimum-description length (MDL) criterion. Over the entire set of

cases, the minimum, median and maximum p selected in this way were 6, 23 and 40, respectively. Power

spectral densities (PSD) of the AR models were computed following [8] and sampled at 120 frequencies

to resolve the majority of the resonances.

We summarized the PSD by the energy of three bands: LF (30-150 mHz), MF (150-500 mHz) and HF

(0.5-1.0 Hz) [8], [9]. Relative band energies (in units of bpm2) were calculated by summing the spectrum

over each frequency band; these sum to 1 because of the assumption that unity variance Gaussian white

noise is the input to the AR model. This result was scaled by the variance of the filtered HRV to

calculate absolute band energies. The square root of these energies gave the parameters HRVLF , HRVMF

and HRVHF , in more interpretable units of bpm.

Fig. 3(b) shows the HRV signal and Fig. 3(c) shows its estimated PSD. The relative band energies were

proportional to the indicated areas for LF, MF and HF. The expected low-pass nature of the spectrum [8]
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is evident. Note that the very-low frequency (VLF) band (0.0-30 mHz) was accounted for in the system

identification model, so it was attenuated by the 30 mHz high-pass filter. Hence it did not have an impact

on the HRV estimate.

G. Classification

1) Data: Each recording was labelled by outcome according to the fetal, arterial, umbilical-cord,

base deficit and associated neonatal indications of neurological impairment. An elevated base deficit

is an important indicator of metabolic acidosis large enough to cause neurological injury [5], [20],

[21]. The majority of the recordings were from normal fetuses (base deficit < 8 mmol/L); these were

collected from consecutive births at an urban university teaching hospital, which used CTG extensively

and routinely measured umbilical artery blood gases at birth. The rest were severely pathological (base

deficit ≥ 12 mmol/L and death or evidence of hypoxic ischemic encephalopathy). The very low natural

incidence of pathology necessitated collecting cases from a number of hospitals and medico-legal files.

All CTG records comprised at least three hours of recording; the selected 263 records were a subset

of a larger database of several thousand records. The recording was included if there were at least three

epochs in which an IRF could be identified. Only those epochs having a valid system identification model

were considered, in order to allow a comparison of the relative information content of the models derived

from system identification and baseline-HRV. Of the 220 normal and 43 pathological cases in the initial

subset, 187 normal and 26 pathological cases fulfilled these criteria.

2) Attributes: We generated attributes for classification from the model parameters. We chose attributes

that showed statistically significant differences between the normal and the pathological cases. Statistical

significance was assessed by comparing class distributions with the Kolmogorov-Smirnov (K-S) hypoth-

esis test, which uses the maximum difference of the empirical cumulative distribution functions (cdfs) as

a test statistic. We rejected the null hypothesis at the p < 0.05 significance level.

Two attributes were retained from the system identification models: the delay d, which measures the

timing of the FHR response to UP, and the steady-state gain G, which reflects the strength of the response

to contractions. Three attributes were included from the baseline and HRV models: the offset of the linear

fit FHRBL, the low frequency HRV band level HRVLF and the movement band level HRVMF .

3) Per-epoch classification: The attributes for each epoch and the outcome labels from the database

were used to generate instances for classification. Instances were selected only from epochs with valid

system identification models; consequently, the number of the instances per fetus varied. The label given

to all instances of a fetus was the known fetal state at birth (despite the fact that the state can change
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during labour).

We chose a discriminative classification approach because it was simple, intuitive and permitted efficient

and robust learning. Specifically, we generated two support-vector machine (SVM) classifiers: one using

the system identification attributes and another using the baseline-HRV attributes. SVM classification was

chosen because it gives state-of-the-art performance, is robust to overfitting, and computationally efficient

implementations are available. SVM learning algorithms process labelled data to determine an optimal

decision boundary. This boundary is represented using a subset of the data called the support vectors.

The decision boundary can be linear or nonlinear, depending on the kernel chosen. We used a Gaussian

kernel to allow a nonlinear boundary.

These per-epoch classifiers predict the fetal state at each epoch using attributes computed from models

of that epoch. In addition, the decisions of these two classifiers were logically ORed at each epoch to

generate a combined classification.

4) Detection of pathological fetuses: It is reasonable to assume that the more often the classifier

predictions are pathological, the higher is the likelihood that the fetus is truly pathological. To measure

this, we implemented a detector that computed a running sum of the per-epoch pathological classifications;

once this count attained a certain threshold, a pathological detection was deemed to have occurred. We

applied this detection process to the system identification, baseline-HRV and combined classifiers. The

combined detector should lead to earlier detection if the decisions of the two classifiers are independent.

5) Empirical setup: Multiple ten-fold cross-validation simulations were performed. The folds were

selected on a per-fetus basis; that is, all instances generated from a particular fetus were used either in

training or testing, but not both. Each fold was partitioned into test and training data, and a subset of the

training data was used as validation data to choose the SVM hyper-parameters, as we describe below.

For each cross validation, the mean and standard error of the receiver-operating characteristic (ROC) was

computed for classifiers over all cross-validation folds. We report the mean values of these statistics over

five repetitions of cross validation.

Each SVM had two hyperparameters to select: the Gaussian kernel width σ and the misclassification

cost parameter α. We chose σ using the per-epoch classifiers and α using the subsequent detection step.

To choose the kernel width σ, we first generated ROC curves for each value of σ by varying the α

hyperparameter over a range that favoured either sensitivity or specificity. The hyper-parameter σ that

generated the ROC with the highest area-under-curve (AUC) was selected, as measured on the validation

data. Then, with σ fixed, we generated detector ROCs for each value of α by varying the threshold

from 1 to 6 epochs. We chose the value of α that generated the detector ROC with the highest AUC, as
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measured on the validation data. In both cases, the AUC was calculated over a limited range of clinically

useful false positive rates (i.e., < 0.3). We used these selected σ and α to train SVMs on the entire

training data and used the resulting classifiers in the final detectors.

III. Results

A. Time progression of features

Fig. 5 shows the average model parameters at each epoch for the two groups. Delivery is considered to

have occurred at epoch 0. All features had significant differences in their class statistics at some epochs

but not at others. Differences tended to occur earlier in labour and delivery and diminish near the end of

delivery, although the delay, d, was consistently higher for pathological cases throughout. All parameters

tended to be larger for pathological cases. At least one parameter was significantly different more often

for system identification (13 epochs) than for baseline-HRV (8 epochs). Note that the K-S test that is

used to determine statistical significance is very conservative, so the differences may be significant more

often than indicated.

B. Illustration of the classification using system identification features

Fig. 6 shows all the instances (including the support vectors outlined in black) from one fold of training

data, the value of the classifier decision function H (as shown by shades of gold and turquoise), and the

decision boundary H = 0 based on the system identification feature set.

We note that there are two regions in which instances are classified as pathological; the most heavily

populated (lower right) is characterized by long delay and large negative gain; a smaller population in

the upper left region are instances characterized by short delay and large positive gain. Between these

pathological regions there is a region in which instances are classified as normal. At the boundaries of

these regions are the support vectors, where classification is less certain. The large proportion of support

vectors (684 of 1499 training samples) indicates that the classification problem is difficult.

The trajectory of one pathological case, not included in the training set, is shown by the red arrows.

It began in one of the support vector regions, in which intuitively classification is somewhat uncertain,

then moved into the normal region, passed through the other support vector region and finally ended in

the pathological region. This suggests that this case deteriorated from a normal to a pathological state

over time. We observed other pathological cases with similar behaviour. We also observed normal cases

that started normal and ended close to or within the pathological region near delivery.
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C. Per-epoch system identification and baseline-HRV classifiers

Fig. 4 shows ROCs for the per-epoch system identification and baseline-HRV classifiers. The system

identification classifier (AUC = 0.140±0.020 ) performed marginally better than the baseline-HRV clas-

sifier (AUC = 0.131±0.018), but the differences are not compelling and neither classifier did particularly

well. This is not surprising since the state of the fetus degrades over time; some normal cases may have

transitioned towards a pathological state late in delivery while some pathological cases may have been

in a normal state early in labour and delivery. Unfortunately, it is impossible to obtain a better labelling

of the data based on the available clinical information. Hence, we used a detection approach to improve

accuracy.

D. Detection of pathological fetuses

The detectors used the history of per-epoch classifications for each fetus to detect pathology. Six

detectors were examined using different per-epoch classifiers and thresholds, as shown in Table I. Only

thresholds 1 and 2 are shown because detectors with higher thresholds performed worse. Fig. 7 shows

the performance of the 6 detectors in terms of pathological detection (sensitivity) and normal detection

(specificity) over time. Higher detection is better for both measures. Error bars are omitted because

there was little plotting overlap and a clear ranking can be observed. It is apparent that pathological

detection is more conservative (i.e., delayed, as indicated by a shift to the right) for the higher threshold.

The combined detectors (C1 and C2) identified pathological cases earlier and consistently better than

equivalent individual detectors.

Detector Per-epoch classifier Threshold (epochs)

S1 System identification 1

S2 System identification 2

B1 Baseline-HRV 1

B2 Baseline-HRV 2

C1 System identification ∪ Baseline-HRV 1

C2 System identification ∪ Baseline-HRV 2

TABLE I

Detector descriptions

Selecting the best performing detector must consider both performance measures. We consider C2 to
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be the best detector because it had close to the best detection of pathological cases and close to the best

false positive rates, especially in the first half of the three hour record when a clinical response is most

important. C2 detected half of the pathological cases with a false positive rate of 7.5% at epoch -10 (i.e.,

roughly one hour and forty minutes before the original time of delivery). In comparison, while C1 had

that best detection of pathological cases, it had the worst false positive rates.
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Fig. 4. Receiver-operator characteristic (ROC) comparison for system identification and baseline-HRV per-epoch classifiers.

Each ROC was generated using a constant γ of the SVM Gaussian kernel and varying the cost associated with misclassifying

normal or pathological examples. The bars indicate the standard error of the ROC estimate over the ten cross-validation folds.

The area under the curve (AUC) was calculated for false positive rates less than 0.3.
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Fig. 5. Time progression of model parameters in the last three hours of labour and delivery for normal (N, black triangles) and

pathological (P, red squares) cases. The mean and standard error are plotted by epoch for (a) delay d, (b) gain G (c) baseline

FHRBL, (d) low-frequency band heart-rate variability HRVLF and (e) movement-frequency band heart-rate variability HRVMF .

For each parameter, epochs where hypothesis tests indicated significant differences between classes (p < 0.05) are indicated by

stars.
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Fig. 6. Feature and decision space for one fold of a system identification classifier. Training data are labelled by green (normal)

and red (pathological) circles. The classifier decision function H is indicated by turquoise (H < 0, normal) and gold (H > 0,

pathological) regions separated by solid white lines (H = 0). Most of the support vectors (684 of 1499 training samples, outlined

in black) lie the two regions between the contours H = ±1 (dotted white lines), where classification is less certain. The trajectory

highlighted by a solid red line is a non-training pathological case whose classification transitions from normal to pathological.

The arrows indicate increasing time.
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Fig. 7. (a) Pathological and (b) normal detection over time for selected system identification (S1 and S2, red circles), baseline-

HRV (B1 and B2, blue triangles) and combined (C1 and C2, black squares) detectors. The cumulative count is indicated by

open (threshold = 1) and filled (threshold = 2) markers. The vertical dotted lines indicate the time of 90 minutes before delivery.

The horizontal dotted lines indicate the 50% pathological and 90% normal detection levels.
83



www.manaraa.com

IV. Discussion

The major finding of this study is that a combination of system identification and baseline-HRV features

can be incorporated successfully in a very good detector of fetal distress. It detected correctly half of the

pathological cases, with acceptable false positive rates (7.5%), early enough to permit clinical intervention.

This detector was superior to alternatives using either feature set by itself.

By definition, the pathological cases in our database had been missed by clinicians. Therefore, it is

very significant that our automated approach detected half of these cases near the midpoint of the three

hour records. It is interesting that this corresponds well to the clinical fact that approximately 50 % of

birth-related brain injuries are deemed preventable, with incorrect CTG interpretation leading the list of

causes [3], [6], [22], [23].

Timing of detection is very important given that fetal state evolves; detecting fetal distress near the

time of delivery has less potential to improve clinical outcomes, while an advance warning of one hour

and forty minutes is very significant clinically. This is a relatively long time for treatment to occur and

improve outcome; typically, the interval between a decision to intervene and Cesarian birth is less than

30 minutes [24]. Furthermore, the cost of believing these decisions (i.e., a rate of unnecessary Cesarian

sections of 7.5%) is acceptable clinically.

A. Non-stationarity

The non-stationarity of both the attributes and the fetal state poses several challenges to the detection

of pathology. The later a detection occurred, the more likely it was that the fetus was a normal case that

had deteriorated with time. This is because near delivery, attributes from normal and pathological cases

tended to become closer in value and false positive rates rose, as shown in Figs. 5 and 7. Early detection

gives better confidence that a case is indeed pathological. On the other hand, pathological cases frequently

began with parameters that were normal and deteriorated over time, as indicated by their trajectory in

decision space. This created problems for per-epoch classification, meaning that several instances (epochs)

may be mislabelled. However, this is the best that can be done given the data we have, since the true

state is not observed during labour and delivery.

We addressed this problem by introducing a detector of pathology defined by a threshold of accumulated

pathological classifications. This resulted in a more consistent interpretation of the classifications over

time despite the non-stationary and noisy nature of the data. The detector avoids the confusion of decision

oscillations by restricting decision transitions to be from a normal decision to a pathological one.
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It might also be useful to incorporate knowledge of the trajectory in feature space. One approach

worth investigating would be to relabel cases according to the decisions of our detector, and re-train

the classifiers. This approach is more akin to semi-supervised learning: one would essentially treat the

examples with a more certain classification as labelled, and the ones with uncertain classifications as

unlabelled data, whose labels are iteratively improved by using a sequence of classifiers. We have a

database of intermediate cases, not used in this study, for which such an approach would be useful.

An alternative approach that we had considered was to use expectation maximization in order to fit a

probabilistic model of evolution from a normal to a pathological state. However, given the small number

of pathological cases, and the difficulty of choosing initial parameters, we decided to switch to using

discriminative classification. The approach we presented in the paper is more data-efficient and robust to

noise than any of the probabilistic architectures we tried.

It is notable that there were two pathological decision regions: the lower right region of Fig. 6 associated

with deep and long-delay decelerations and the upper left region reflecting acceleration response to

contractions. These infrequent cases of acceleration response occurred early and gradually evolved to

decelerations, as in the example shown. Further investigation is required to determine whether such

acceleration responses could be precursors to pathology.

B. Data

We obtained these very encouraging results despite the use of noisy data collected under clinical

conditions and therefore subject to frequent artifacts related to sensor disturbances. We also defined

pathology to include only severely compromised fetuses; other databases used for fetal-state classification

have used milder definitions of pathology (c.f., [25]–[30]). Therefore, we have relatively few of these

cases, and a slight variation in the case selection can affect results. Our database is nevertheless unique,

and required significant time for compilation; the relatively low number of pathological cases (as we

have defined pathology) is actually high compared to other known databases.

Because of the prevalence of data artifact, decisions were often based on a small proportion of the data

record. However, with a more rigorous data-collection protocol generating cleaner and more informative

data (e.g., using better calibrated UP [7] and using R-R intervals for HRV estimates [31]), we would

expect better results in terms of accuracy and timing since we could obtain better models and a decision

could be made at more epochs.
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C. Clinical relevance

The system identification and baseline-HRV detectors gave comparable results, and combining these

feature sets further improved results, as shown in Fig. 7. This is consistent with clinical expectation on the

importance of both the deceleration response to UP and baseline-HRV as indicators of fetal well-being [4].

It is natural to inquire why half of the cases were not detected. We lumped all pathological cases

together using the criteria of base deficit value and indications of neurological impairment. However,

these cases likely represent more than one population corresponding to different pathological conditions

during labour and delivery. Some may have experienced severe, acute events near delivery (giving little

time to respond) while others may have had different underlying chronic conditions during pregnancy (e.g.

intrauterine infection) making the fetus more vulnerable during labour and delivery [4]. Unfortunately, this

information was not consistently available in our database; hence we cannot label these sub-populations

and perform more precise classification.

Our methodology uses the simplicity and robustness of discriminatory classification as its foundation.

However, because of the non-stationarity of these attributes and the evolution of the state of the fetus

during labour and delivery, using classification alone is problematic. To overcome this, our thresholding

approach for detection incorporates timing in a way that is simple and intuitive. It is also sensible

clinically since it is known that persistence of “non-reassuring” states is associated with pathology [5].

Implementing the detector in a clinical setting will require more research into the issue of what is the

best way to present the detection results to the clinician.
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CHAPTER 7
Appendix to Journal article III

The following table shows the sensitivity and specificity values (given as false positive

rates) used to generate the plots for all the classifiers of Fig. 7 in the previous chapter.
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CHAPTER 8
Conclusions and discussion

8.1 Thesis approach and rationale

The three journal papers of this thesis clearly met the objectives of the thesis approach

and rationale. We reiterate these objectives below. The research shall:

• be data-driven: model the data as much as possible rather than choose features a-

priori and in so doing extract as much of the information content as possible. As

such, FHR estimates from the model should account for most of the original measured

FHR signal energy, apart from noise and distortion.

• obtain the most informative input-output models from UP and FHR. While coarse

measures of UP-FHR interaction have been described, this thesis is the first to propose

a system-identification approach the problem.

• report performance using an independent test set, using multiple k-fold cross-validation

simulations whenever possible so that all performance estimates also include confi-

dence levels.

• use outcome-class labelling that is as objective as possible. Base deficit and signs

of neonatal neuropathology are some of the best early neonatal indicators of fetal

hypoxic distress.

All of these objectives have been met. First, a signal modelling approach was used

throughout. The feature extraction approach of journal paper I (chapter 4) modelled the

FHR using singular spectrum analysis for the purposes of deceleration detection. Journal

paper II (chapter 5) focused on modelling in creating a system identification model of the

input UP and output FHR data. Journal paper III (chapter 6) also used a modelling

approach to estimating FHR parameters (for baseline and heart-rate variability) comple-

mentary to the system identification parameters.
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In Journal paper III, we used 10-fold cross-validation to report all classification perfor-

mance results, and included a validation set to ensure that hyperparameter selection was

unbiased by test results. Finally, in Journal papers II and III, we used base deficit value

and indications of neonatal encephalopathy for objective outcome class labelling.

All the papers shared the common goal of FHR signal estimation. Early thesis work

used this estimation for feature detection (e.g. for deceleration detection in Journal paper

I). Later in the thesis, we shifted the focus of the estimation from FHR alone to the

UP-FHR signal pair to establish the novel system identification model (Journal papers II

and III). The purpose of this modelling went beyond feature detection and directly to the

main goal of the thesis, that is, automated decision support, by using machine learning

techniques to associate these stimulus-response models with the fetal state during labour

and delivery.

8.2 Contributions to the field

8.2.1 Novel application of system identification modelling to CTG signals

The thesis made several important new contributions to the field of intra-partum fetal

surveillance. The core of the thesis is the novel system identification model of the dynamic

relationship between UP and FHR. This is a marked departure from most approaches based

on feature detection. While system identification has been applied in numerous biomedical

problems, this is the first reported use with CTG signals. Our application of system

identification to CTG provided a vehicle for introducing several noise reduction steps into

the modelling process. Use of the pseudo-inverse method, order selection and surrogate

model testing gave very good confidence that models had captured significant UP-FHR

interaction despite the prevalence of noise in both these signals. Most importantly, the

models were discriminating; we showed that the models for normal and pathological cases

is our database had parameters with statistically significant differences, with pathological

cases having stronger, more delayed and more predictable responses, consistent with clinical

expectation.
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8.2.2 Creation of a fetal distress detector suitable for real-time application

Journal paper III addressed the main goal of the thesis, that is, automated assessment

of the fetal state during labour and delivery. Using the system identification models of the

previous paper, we classified 20-min epochs as normal or pathological. At the same time,

we did similar classification using the complementary FHR information of baseline and

variability parameters. By combining these epoch classifiers and observing their history

over time, we constructed a detector of fetal pathology. The results indicate that half of

the pathological cases in the database were detected, with low false positive rates (7.5%),

early enough (1.5 hours before delivery) to allow appropriate clinical intervention. These

results are also significant because these detected pathological cases in our retrospective

study, by the definition of our database, had originally been undetected by obstetricians.

These results are one of the few in the field that consider the real-time problem of

detecting pathology early enough to allow appropriate clinical intervention. Other studies

most often examine retrospective data as a whole before delivery before making a decision.

Under clinical conditions, it is not feasible to expect that all data before delivery is available

to form opinions about the state of the fetus. Indeed, implementing the detector in a

clinical setting will require more research into the issue of what is the best way to present

the detection results to the clinician.

As an addendum to this article, we note that for the cases considered for detection, the

incidence of cesarian section was higher for the pathological cases (10/26=38%) compared

to the normal cases (21/187=11%). In Fig. 8–1, we compare the sensitivities and specifici-

ties of vaginal and cesarian-section births and the overall population reported in journal

article III. We note that the specificity is considerably lower for the cesarian sectioned cases,

likely indicating that the associated FHRs tended to be less reassuring, and that interven-

tion improved outcomes. Consequently, this confounded our overall specificity estimate,

but in a way that underestimated performance; indeed, the specificity for the vaginal birth

population is slightly better than the overall rate. As well, the sensitivities were greater
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for the vaginal cases compared to both the overall and cesarian cases. This supports our

contention that the system can detect cases early that were not acted upon by clinicians.

It should be clarified that while the article states that the pathological cases were

missed by clinicians, a number of factors could have contributed to the adverse outcome,

including refusal of intervention by the mother, non-availability of the operating room and

non-presence of the obstetrician. Our database does not provide this specific information

consistently. However, numerous reviews cited in the thesis [13, 15] show that the large

majority (80%) of hypoxic injuries are acute in nature (i.e., they occur during labour and

delivery). Therefore, it is very likely that more timely intervention could have improved

outcome for some of the cesarian-sectioned pathological cases.

8.2.3 Selecting objective, orthogonal features for feature detection

Rather than mimic the clinician by selecting features that correspond to methods of

visual inspection, Journal paper I used a principal components approach to obtain more ob-

jective and orthogonal features. This approach to input feature selection has been used in

other biomedical classification problems, but this thesis is one of the few studies that apply

it to CTG analysis. Manually selected features are often non-orthogonal (i.e. correlated)

which complicates classification procedures by elevating the number of input parameters

used. Increasing the number of inputs evokes the so-called ‘curse of dimensionality’, be-

cause increasing input dimensions require increasingly complicated decision boundaries to

separate classes.

8.2.4 Future work

We obtained these very encouraging results despite the use of noisy data collected

under clinical conditions and therefore subject to frequent artifacts related to sensor dis-

turbances. Because of the prevalence of data artifact, decisions were often based on a small

proportion of the data record. However, with a more rigorous data-collection protocol gen-

erating cleaner and more informative data (e.g., using better calibrated UP [85] and using

R-R intervals for HRV estimates [11]), we would expect better results in terms of accuracy
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Figure 8–1: (a) Pathological and (b) normal detection over time for the C2 detector,
comparing the rates for vaginal (diamonds) and cesarian births (crosshatches) to the overall
rates (squares) reported in journal article III. The sample sizes are indicated for each
population.
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and timing since we could obtain better models and a decision could be made at more

epochs.

The generally low VAFs of the system identification models can be attributed to that

fact that UP is not the only influence on FHR. Background intrinsic FHR variability unre-

lated to UP can be of significant amplitude [93]. Also, our linear model assumes stationarity

within epochs (which can be violated) and there are approaches that better handle these

non-stationarities [24]. As well, our model does not account for non-linear interactions

such as 1) the higher-frequency harmonics present in some very sharp decelerations and 2)

variability that is coincident with decelerations [60]. Incorporating these nonlinearities into

the model could improve modelling, but more importantly, could capture discriminating

signal characteristics that are not present in the linear model.

We also hope to classify intermediate cases, which may develop hypoxia quite late

in delivery. A survey of clinical FHR studies [56] concluded that fetal acidemia usually

develops over one hour. Given fetal-state evolution over this time frame, there is great

potential for the combination of better data collection and model-based analysis to improve

current clinical practice by identifying fetuses at risk before they become injured.
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Appendix A: Summary of publications

Journal articles

• Feature extraction

– Philip A. Warrick, Doina Precup, Emily F. Hamilton, and Robert E. Kearney.

Fetal heart rate deceleration detection using a discrete cosine transform imple-

mentation of singular spectrum analysis. Methods of Information in Medicine,

46(2):196–201, 2007

• System identification

– Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kearney.

Identification of the dynamic relationship between intra-partum uterine pressure

and fetal heart rate for normal and hypoxic fetuses. IEEE Transactions on

Biomedical Engineering, 56(6):1587–1597, June 2009

• Fetal-state classification

– Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kear-

ney. Classification of normal and hypoxic fetuses from systems modelling of

intra-partum cardiotocography. IEEE Transactions on Biomedical Engineering,

October 2009. accepted

– C.H Elliott, P.A. Warrick, E. Graham, and E.F. Hamilton. Graded classification

of fetal heart rate tracings:association with neonatal metabolic acidosis and

neurologic morbidity. American Journal of Obstetrics and Gynecology, 2009.

accepted

Refereed conferences & workshops

• Feature extraction

– Philip A. Warrick, Doina Precup, Emily F. Hamilton, and Robert E. Kearney.

Fetal heart rate deceleration detection using a discrete cosine transform imple-

mentation of singular spectrum analysis. In The 5th International Workshop
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On Biosignal Interpretation. Proceedings., pages 151–154, 2005. (3rd-prize in

student competition)

(3rd-prize in student competition)

– Philip A. Warrick, Doina Precup, Emily F. Hamilton, and Robert E. Kearney.

Fetal heart rate deceleration detection from the discrete cosine transform spec-

trum. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology

27th Annual Conference, pages 5555–5558, 2005

– E. Hamilton, A. Dyachenko, C. Elliott, P. Warrick, and A. Ciampi. Progression

of intrapartum EFM patterns in births with symptomatic metabolic acidosis.

American Journal of Obstetrics and Gynecology, 197(6):s182, 2007

• System identification

– Philip A. Warrick, Robert E. Kearney, Doina Precup, and Emily F. Hamilton.

Linear models of intrapartum uterine pressure-fetal heart rate interaction for

the normal and hypoxic fetus. In Proceedings of the 2006 IEEE Engineering in

Medicine and Biology 28th Annual Conference, pages 6434–6437, 2006

– Philip A. Warrick, Robert E. Kearney, Doina Precup, and Emily F. Hamilton.

Low-order parametric system identification for intrapartum uterine pressure-

fetal heart rate interaction. In The 2007 IEEE Engineering in Medicine and

Biology 29th Annual Conference, pages 5043–5046, 2007

– Philip A. Warrick, Robert E. Kearney, Doina Precup, and Emily F. Hamilton.

Time progression of a parametric impulse response function estimate from intra-

partum cardiotocography for normal and hypoxic fetuses. In Computers in

Cardiology 2007, pages 693–696, 2007

– Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kear-

ney. Detecting the temporal extent of the impulse response function from intra-

partum cardiotocography for normal and hypoxic fetuses. In The 2008 IEEE

Engineering in Medicine and Biology 30th Annual Conference, pages 2797–2800,

2008
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• Fetal-state classification from system identification

– Philip A. Warrick, Robert E. Kearney, Doina Precup, and Emily F. Hamilton.

System-identification noise suppression for intra-partum cardiotocography to

discriminate normal and hypoxic fetuses. In Computers in Cardiology 2006.

Proceedings., volume 33, pages 937–940, 2006

– Philip A. Warrick, Emily F. Hamilton, Robert E. Kearney, and Doina Precup.

Classification of normal and hypoxic fetuses using system identification from

intra-partum cardiotocography. In ICML2008 Workshop on Machine Learning

for Health Care Applications, 2008

Book Chapters

• System identification and clinical relevance

– Philip A. Warrick, Emily F. Hamilton, Doina Precup, and Robert E. Kearney.

Brain Hypoxia Ischemia Research Progress, chapter Perinatal Hypoxic Brain

Injury, pages 257–269. Nova Science Publishers, Inc., Hauppauge, NY, 2008
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